Legislatures Political Economy

Prof. Francesco Trebbi

University of British Columbia - Vancouver School of Economics

Trebbi

- We will begin a formal analysis of voting behavior in legislatures applying what we will call a "spatial voting approach".
- We will focus first on "sincere voting" first and derive the structure at the basis of the most popular ideal point estimation approach followed in political science and political economy: DW-Nominate (Poole and Rosenthal, 1997; McCarty, Poole and Rosenthal, 2006).
- Then we will move to more realistic and complex environments (Canen, Kendall and Trebbi, forthcoming; Canen, Kendall and Trebbi, 2020).

- This is one of the few example of structural econometrics in political science.
- What "spatial" means is very simple: every politician will be endowed with certain policy preferences defined as a point in a policy space and will vote between two policy options based on which one is closest to his/her ideal point.
- It starts from think about the policy space as some low-dimensional space. Say, the real line. Make it oriented so that higher values mean more conservative and lower values more liberal.

- Suppose policy space is the real line and define a distance *d*. A metric space (ℝ, *d*).
- Policy space does not need to be unidimensional, but easier for now.
- Each politician has ideology $\theta_i \in \mathbb{R}$ and evaluates her utility from policy alternative $k \in \mathbb{R}$
- Deterministic part of utility function u(k, θ_i) = − || k − θ_i || where || . || is distance function.
- For example, a simple quadratic loss function u(k, θ_i) = −(k − θ_i)² or something fancier like −|k − θ_i|^ξ

・ロト ・四ト ・ヨト ・ ヨト ・ ヨ

Preference for alternative x relative to status quo q

Preferences (Cont.)

- Note that we can add shocks to get a full random utility setting: U_i(k) = -(k - θ_i)² + ε_{ik} where the shock ε_{ik} is an i.i.d. random variable that hits voter i when she picks that specific k as her choice
- Think of it as a taste element that is random not deterministic and known before the moment of choosing
- This means that *i* has a probability of choosing *x* over the status quo *q* (voting Yes to an alternative) with probability:

$$\begin{aligned} \Pr(i \text{ votes for } x) &= \Pr\left(-(x-\theta_i)^2 + \varepsilon_{ix} \ge -(q-\theta_i)^2 + \varepsilon_{iq}\right) \\ &= \Pr\left((q-\theta_i)^2 - (x-\theta_i)^2 \ge \varepsilon_{iq} - \varepsilon_{ix}\right) \\ &= CDF\left((q-\theta_i)^2 - (x-\theta_i)^2\right) \end{aligned}$$

and with CDF indicating the cumulative distribution function of the random variable $\varepsilon_{iq} - \varepsilon_{ix}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- The interesting thing is that if you pick appropriate distributions for the shock ε_{ik} a full likelihood profile of the vote choices made by the N politicians in your sample can be formulated in closed form.
- Then you maximize such likelihood with respect to the parameters (MLE)
- And essentially from that you can estimate the whole set of ideal points $\Theta = \{\theta_i\}!$

- For clarity, suppose the CDF is Standard normal $\Phi(.)$
- Say a dummy Yesⁱ = 1 vote by i indicates preference for x over q; and Yesⁱ = 0 preference for q over x
- And you observe whether someone voted Yes or No (i.e. $Yes^i = 0$)

- ∢ ∃ ▶

- Putting together all choices made by the politician in the sample is possible because they are independent events and therefore you just multiply the marginals
- This is going to produce a simple Likelihood function like this:

$$\begin{split} \mathcal{L}(\Theta; \operatorname{Yes}^{i}) &= \\ &\prod_{i=1}^{N} \Phi((q-\theta_{i})^{2} - (x-\theta_{i})^{2})^{\operatorname{Yes}^{i}} \\ &\times \left(1 - \Phi\left((q-\theta_{i})^{2} - (x-\theta_{i})^{2}\right)\right)^{1 - \operatorname{Yes}^{i}} \end{split}$$

- There is a last feature to clarify. How can I get one parameter θ_i for each i if I only see a politician i vote once?
- Politicans vote many times: t = 1, ..., T.
- *T* is the number of roll call votes cast by each politician per congressional cycle
- A vote for each bill t

• Then, the likelihood that you estimate looks more like:

$$\begin{split} \mathcal{L}(\Theta; Q; X; \operatorname{Yes}_{t}^{i}) &= \\ &\prod_{t=1}^{T} \prod_{i=1}^{N} \Phi((q_{t} - \theta_{i})^{2} - (\mathbf{x}_{t} - \theta_{i})^{2})^{\operatorname{Yes}_{t}^{i}} \\ &\times \left(1 - \Phi\left((q_{t} - \theta_{i})^{2} - (\mathbf{x}_{t} - \theta_{i})^{2}\right)\right)^{1 - \operatorname{Yes}_{t}^{i}} \end{split}$$

- *L*(Θ; Q; X; Yesⁱ_t) is identified and feasible with large N and T (no nuisance parameter issue, Fernandez-Val and Weidner, 2016)
- This is the clear representation of where Nominate scores come from (Θ)

Elite Polarization: Distance of Party Medians

Elite Polarization in DW-Nominate

Party Polarization 1879-2015 Distance Between the Parties First Dimension

"Political polarization has reached levels not seen in decades, with nearly one-third of people in each party describing the other party as a threat to the nation's well-being. Trust in all institutions, including media, government, and business has fallen considerably." - T. R. Heath (2018)

¹www.voteview.com

Percentage of Foreign Policy Opinion Leaders Seeing Issue as Critical Threat						
	Republicans	Democrats	Independents			
Political polarization in US	71	74	74			
North Korea's nuclear program	54	53	50			
Iran's nuclear program	64	28	33			
Development of China as a world power	52	37	42			
Decline of democracy around the world	35	57	42			
Russian influence in US elections	41	78	45			
Trade war with China	25	34	36			
Drug-related violence and instability in Mexico	25	18	23			
Large numbers of immigrants and refugees entering US	23	2	14			
Economic competition from low- wage countries	0	9	10			
Chicago Council on Global Affairs-Texas National Security Network Survey of Foreign Policy Opinion						

eaders, August 2 - October 16, 2018

2

3 × 4 3 ×

Image: A matrix

• Survey responses of 588 foreign policy opinion leaders

²D.Smeltz, J. Busby, and J. Tama, The Hill, 2018

Trebbi

Political Economy

14/64

- CKT paper sets to:
 - (i) quantify the *sources* of political polarization
 - (ii) determine how polarization affects policy outcomes
 - (iii) clarify the role of agenda setting & selection on votes

- Two main sources:
 - members' **ideological positions** themselves (McCarthy, Poole, Rosenthal, 2006)
 - **party discipline** (Snyder and Groseclose, 2000; Cox and McCubbins, 2005)
- Difficulty separating the two is a well known problem (Krehbiel, 1993, 1999, 2000)
 - cohesion/party unity may reflect self-selection into parties
 - parties may only pursue agendas/bills on which they agree (Cox and McCubbins, 2005)
- Source is important:
 - party discipline may be more amenable to change
 - differential effects on outcomes

∃ ▶ ∢ ∃ ▶

• Provide a model of the legislative process from policy selection to roll-call votes

- where votes on policy are the result of:
 - heterogeneous ideologies
 - 2 party discipline
 - 3 agenda-setting
- Use new internal party records whip counts to identify key sources of party control:
 - whip counts provide information on ideology before discipline
 - presence of a whip count indicates the 'value' of a bill
- Structurally estimate model & perform counterfactual exercises to illustrate how polarization affects outcomes

-∢ ∃ ▶

- Informal polls of members typically taken a day or two before the roll call vote (Evans, 2018)
- e.g. Whip counts show that repeal of ACA won't have enough votes: With Democrats united in opposition, House Republicans are currently short of the 216 votes they need to pass the bill before the Senate could take it up. They can afford only 22 defections, and the latest whip counts put Republican "no" votes at about 20, with a dozen more undecided. - BBC
- e.g. On the Tax Bill, after roll call (it passed with 227 votes vs. 205, with 13 Republicans breaking rank):

Ryan and House GOP leaders were confident throughout the week that they'd have the 218 votes needed for passage, even with unified Democratic opposition. In fact, they've felt so good about their whip count they barely called on the White House to twist arms. - Politico

• Key assumption: Whip counts are on average truthful (Evans, 2013):

"One common question about whip counts is whether the responses of members can be trusted...Four points are worth mentioning in response. First, the whip process is a "repeated game" and members develop reputations. There are incentives for them to be truthful. Second, congressional leaders generally know a lot about the constituencies of rank-and-file members and can be very difficult to fool. Third, in a sense it does not matter. If a member claims that she will oppose a bill or amendment unless she receives some concession, then that essentially becomes her position and the polled question and the concession are for all practical purposes inseparable. Fourth, and most important, participants in the whip process believe that whip poll responses are accurate, which is precisely why they base strategic decisions on the results."

- Very large and important literature on estimating ideal points (Poole and Rosenthal, 1984;...)
- More closely related to that which attempts to separate out party effects (Jenkins, 2000; Snyder and Groseclose, 2000; Nokken, 2000; Clinton, 2004)
 - we incorporate new data (whip counts) via a new theoretical, estimable framework
- Much smaller literature on the effects of polarization on policy (Binder, 2003; Mian et al., 2014)
 - we provide theory & quantitative estimates

3 K K 3 K

- Two parties, $p \in \{R, D\}$, compete for votes over a series of bills
 - have preferences of their median members, $\theta_{m,D}$ and $\theta_{m,R}$
 - continuum of members in each party
- One-dimensional ideological space w/ symmetric loss functions
 - bliss points, θ_i
 - $||x_t \omega_{i,t}||$ where $\omega_{i,t} = \theta_i + \sum_{s=1}^2 \delta_{i,t}^s + \eta_t^s$
- Votes, and hence policy outcomes, are stochastic
 - idiosyncratic shocks, $\delta_{i,t}$, & aggregate shocks, η_t (normally distributed)
 - with continuum of members, require aggregate shocks so that outcomes are uncertain
 - aggregate shocks capture anything that affects overall perception of a bill (including changes to bill)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - わえの

Timeline

22 / 64

э.

イロン イ理 とく ヨン イヨン

- $\bullet\,$ Random recognition model each party is chosen to be the proposer with some probability $\gamma\,$
 - required to match empirical fact that a significant number of bills have majority leadership voting 'no' and minority leadership voting 'yes'
- Proposing party:
 - observes a randomly drawn status quo policy, q_t
 - decides whether to pursue an alternative policy to q_t or drop it
 - if it does not drop the issue, party sets alternative, x_t
 - decides whether or not to conduct a whip count at cost, C_w
 - whip count allows proposer to learn about first aggregate shock &drop the bill if not looking promising
 - dropping the bill saves the cost of pursuing a bill at roll call, C_b
 - absent a whip count, goes straight to roll call vote

→ Ξ →

- Discrete-choice model as in DW-Nominate but with two key improvements:
 - shocks are on bliss points, θ_i , instead of utility
 - no need to specify utility function (other than concavity)
 - likelihood becomes a function of marginal voter, $MV_t = \frac{x_t + q_t}{2}$, rather than both q_t and x_t
 - bliss point is subject to influence from party through whipping, $y_{i,t}$, so $\|x_t-\omega_{i,t}-y_{i,t}\|$

- Vote just as any other member
- Whips are assigned members for which they are responsible:
 - at roll call time, obtain information know their members' (stochastic) bliss points
 - can exert influence at a personal cost, $c(y_{i,t})$, strictly increasing
 - obtain r_p any time a member votes as the party prefers
- Whips themselves are subject to being whipped

• Key parameter of interest is maximum distance a whip is willing to influence members, $y_p^{max} = c^{-1}(r_p)$

Optimal Policy Alternatives

• If a policy alternative, x_t , is pursued, want to choose it close to the bliss point of the median member

...but, the closer it is, the less likely is the bill to pass

- Trade-off results in a unique optimal policy
 - always lies between status quo and party's bliss point

- On observing q_t , the proposing party can:
 - do nothing
 - 2 pursue an alternative bill with a whip count
 - opursue an alternative bill without a whip count
- Absent a whip count, bill goes straight to roll call and majority party pays C_b
- With a whip count (at cost C_w), bill can be dropped avoiding C_b
 - provides option value

Which Bills are Pursued

æ

イロト イヨト イヨト イヨト

There exists a strictly positive cutoff cost of pursuing a bill, $\hat{C}_b > 0$, such that for all $C_b < \hat{C}_b$, the optimal alternative policies, x_t^{count} and $x_t^{no\ count}$, are unique and contained in (q_t, θ_D^m) for $q_t < \theta_D^m$, contained in (θ_D^m, q_t) for $q_t > \theta_D^m$, and equal to θ_D^m for $q_t = \theta_D^m$.

Fix $C_b < \hat{C}_b$ such that the optimal alternative policies, x_t^{count} and $x_t^{no \ count}$, are unique and fix the cost of a whip count, $C_w > 0$. Then, we can define a set of cutoff status quo policies, $\underline{q}_l, \overline{q}_l, \underline{q}_r$, and \overline{q}_r , with $\underline{q}_l \leq \overline{q}_l < \theta_D^m < \underline{q}_r \leq \overline{q}_r$ such that:

- for $q_t \in [-\infty, \underline{q}_l] \cup [\overline{q}_r, \infty]$, the optimal alternative policy, $x_t^{no \ count}$, is pursued without conducting a whip count.
- **②** for $q_t \in (\underline{q}_l, \overline{q}_l] \cup [\underline{q}_r, \overline{q}_r)$, the optimal alternative policy, x_t^{count} , is pursued and a whip count is conducted.
- **§** for $q_t \in (\overline{q}_I, \underline{q}_r)$, no alternative policy is pursued.

- U.S. House roll call voting data comes from the standard source, VoteView
- Whip count data covering 1977-1986 as compiled by Evans (2012)
 - Corresponds to time when polarization starts to rise
 - Democrats are majority over time period, but both parties conduct whip counts
 - Republican (1977-1980) data from Robert H. Michel Collection
 - Democratic (1977-1986) data from Congressional Papers of Thomas S. Foley
- We merge the data following Evans (2012)
 - 5424 roll called bills
 - 340 bills with whip counts
 - 238/340 bills have subsequent roll calls

-∢ ∃ ▶

- Key assumption is that whip counts reveal true ideological positions on average (i.e. cannot fool the party all the time)
 - if not revealing, whip counts would be uninformative... but parties do rely on them
 - reputation prevents lying
 - there is a reason why such accurate records were kept
 - deputy whips have detailed knowledge about members' positions (little info asymmetry)

- Ideological positions come from repeated whip count polls (individual fixed effects)
- Marginal voters at time of whip count & time of roll call come from multiple reports/votes on same bill (bill fixed effects/cutoffs)
- Maximum whipping distance, y_p^{max} , comes from distance between marginal voter at time of whip count and *per party* marginal voter at roll call
 - identify direction of whipping from leadership votes
- Distributions of policies (*q_t* and thresholds) come from distributional assumptions + whip counts dropped

• Two-step process (maximum likelihood in each step):

- estimate marginal voters, \tilde{MV}_t , party discipline parameters, y_p^{max} , and ideological bliss points, θ_i
 - we use *all* bills

2 estimate flexible status quo distribution to fit estimated marginal voters

- status quo drawn from truncated normal
- impose model restrictions: leadership votes determine where status quo originated whip counts closer to party median
- first-order conditions relate q_t to \tilde{MV}_t (bills with roll calls only)
- extensive Monte Carlo simulation to demonstrate truncations are recoverable

Deriving Likelihood

Under Assumption 2, the probability i from D votes Yes at the whip count:

$$\begin{aligned} P(\operatorname{Yes}_{t}^{i,wc} = 1) &= P(\delta_{1,t}^{i} + \theta^{i} \leq MV_{t} - \eta_{1,t}) \\ &= P(\delta_{1,t}^{i} \leq \tilde{MV}_{1,t} - \theta^{i}) \\ &= \Phi(\tilde{MV}_{1,t} - \theta^{i}). \end{aligned}$$

At the roll call stage:

$$\begin{aligned} P(Yes_t^{i,rc} = 1) &= P(\delta_{1,t}^i + \delta_{2,t}^i \le MV_t - \eta_{1,t} - \eta_{2,t} - \theta^i \pm y_D^{max}) \\ &= P(\delta_{1,t}^i + \delta_{2,t}^i \le \tilde{MV}_{2,t} - \theta^i \pm y_D^{max}) \\ &= \Phi\left(\frac{\tilde{MV}_{2,t} - \theta^i \pm y_D^{max}}{\sqrt{2}}\right). \end{aligned}$$

э

∃ ▶ ∢ ∃ ▶

First step:

$$\begin{split} \mathcal{L}_{D}(\Theta_{1}; \mathsf{Yes}_{t,p}^{i,\mathsf{wc}}, \mathsf{Yes}_{t,p}^{i,\mathsf{wc}}) = \\ & \prod_{t=1}^{T} \prod_{n=1}^{N_{D}} \Phi(\tilde{\mathsf{MV}}_{1,t} - \theta^{i})^{\mathsf{Yes}_{t,p}^{i,\mathsf{wc}}} \left(1 - \Phi(\tilde{\mathsf{MV}}_{1,t} - \theta^{i})\right)^{1 - \mathsf{Yes}_{t,p}^{i,\mathsf{wc}}} \\ & \times \Phi\left(\frac{\tilde{\mathsf{MV}}_{2,t} - \theta^{i} \pm y_{D}^{max}}{\sqrt{2}}\right)^{\mathsf{Yes}_{t,p}^{i,\mathsf{rc}}} \left(1 - \Phi\left(\frac{\tilde{\mathsf{MV}}_{2,t} - \theta^{i} \pm y_{D}^{max}}{\sqrt{2}}\right)\right)^{1 - \mathsf{Yes}_{t,p}^{i,\mathsf{rc}}} \end{split}$$

æ

イロト イヨト イヨト イヨト

Likelihood (2)

$$\mathcal{L}^{second step}(\Theta_1; \tilde{WC}_t, \tilde{MV}_{2,t}) = \prod_{t=1}^T P(WC_t)^{WC_t} P(\tilde{MV}_{2,t})^{RC_t}$$

For example, for a whip count for a status quo to the right of a party's median, we have, using Proposition 2:

$$P(WC_t) = \frac{\Phi(\frac{\overline{q}_{r,p} - \mu_q}{\sigma_q}) - \Phi(\frac{q}{\tau_{r,p}} - \mu_q}{P(WC_t \cup RC_t)}$$

For example, the probability of observing a particular realized marginal voter for a status quo drawn from the right of the Democrats median (conditional on observing either a whip count or roll call) is:

$$P(\tilde{MV}_{2,t}) = \int_{\overline{q}_{r,D}}^{\infty} \phi\left(\frac{\tilde{MV}_{2,t} - MV(q_t)}{\sigma}\right) \frac{\phi\left(\frac{q_t - \mu_q}{\sigma_q}\right)}{P(WC_t \cup RC_t)} dq_t$$

Trebbi

Party Discipline - Reduced Form

æ

イロト イヨト イヨト イヨト

Ideologies (1)

• Correlation between our estimates and DW-Nominate

- strong, but not perfect, correlation
- noticeable 'gap' introduced by party discipline (right graph)

• 34% to 43% of *perceived* polarization is due to party discipline

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Party Discipline Estimates

Image: A matrix

æ

∃ ► < ∃ ►</p>

First Step Estimates

Parameter	Congress					
	95	96	97	98	99	
y ^{max} , Democrats	0.383	0.526	0.366	0.658	0.865	
	(0.002)	(0.003)	(0.003)	(0.005)	(0.007)	
y ^{max} , Republicans	0.342	0.373	0.482	0.600	0.440	
	(0.003)	(0.003)	(0.004)	(0.005)	(0.004)	
Aggregate Shock, σ_η			0.859			
			(0.230)			
Party Median - Democrats, θ_D^m	-1.431	-1.431	-1.420	-1.435	-1.462	
	(0.038)	(0.038)	(0.042)	(0.040)	(0.095)	
Party Median - Republicans, θ_R^m	-0.036	0.042	0.134	0.181	0.236	
	(0.049)	(0.138)	(0.139)	(0.034)	(0.049)	
N: 711, T: 315 Whip Counted bills, 5424 Roll Called bills						

æ

イロト イヨト イヨト イヨト

Distance from Marginal Voter to Party Median					
	Whip count	Roll call	p-value		
			P		
Democrats	0.479	1.234	(0.000)		
Republicans	0.910	1.163	(0.010)		

• Model predicts whip counts are conducted for policies closer to the party's median (more difficult to pass)

Agenda-Setting (Democrats)

イロト イヨト イヨト イヨト

3

Agenda-Setting (Republicans)

イロト イヨト イヨト イヨト

3

Robustness: e.g. No Whipping on Lopsided Bills

표 문 문

- How would the outcomes of votes on important bills have changed if parties exercised no discipline?
 - hold the policies themselves fixed

-∢ ∃ ▶

Bill	Data	Model	No Whipp
Increase of Temporary Debt Limit, (H.R.9290, Congress 95)	221	242	185
Increase of Temporary Debt Limit, (H.R.13385, Congress 95)	210	235	201
Increase of Temporary Debt Limit, (H.R.2534, Congress 96)	220	239	208
Depository Inst. Dereg. and Monetary Ctrl. Act of 1980, (H.R. 4986, Congress 96)	369	404	391
Inc. of Public Debt Limit, Make it part of Budget Process (H.R. 5369, Congress 96)	225	244	217
Economic Recovery Tax Act of 1981 (H.R. 4242, Congress 97)	284	329	276
Garn-St. Germain Depository Institutions Act of 1982 (H.R.6267, Congress 97)	263	279	327
Social Security Amendments of 1983 (H.R.1900, Congress 98)	282	299	230
Tax Reform Act of 1984 (H.R. 4170, Congress 98)	319	370	292

3

Bill	Data	Model	No Whipping
Aid to Turkey/Lifting of Arms Embargo (H.R. 12514, Congress 95)	212	193	147
Foreign Intelligence Surveillance Act of 1978 (H.R. 7308, Congress 95)	261	283	280
National Energy Act, 1978 (H.R. 8444, Congress 95)	247	271	258
Panama Canal Treaty, 1979 (H.R. 111, Congress 96)	224	243	180
Contra Aid, 1984 (H.R. 5399, Congress 98)	294	279	343

æ

イロト イヨト イヨト イヨト

- Absent party discipline, the optimal policies pursued x_t would have been different
- Look at two counterfactuals, accounting for change in policies themselves:
 - no party discipline
 - increase in ideological polarization (to DW-Nominate levels)
- Look at average effects because we don't know status quo or alternative for any particular bill

			Congress		
	95	96	97	98	99
Average Change in the Probability of Bill Approval					
Democrats					
Baseline Probability (Main Model)	0.357	0.467	0.421	0.431	0.544
Main Model - No Whipping	0.032	0.060	0.009	0.054	0.011
Main Model - Polarized Ideology	-0.005	-0.011	0.010	-0.013	-0.024
Republicans					
Baseline Probability (Main Model)	0.240	0.220	-	-	-
Main Model - No Whipping	-0.034	-0.042	-	-	-
Main Model - Polarized Ideology	0.028	0.032	-	-	-

• Absent whipping, majority party is less likely to pass a bill, minority party more likely

3

• • = • • = •

			Congress		
	95	96	97	98	99
Average Change in Pursued Policy Location, x_t					
Democrats					
Main Model - No Whipping	-0.011	-0.018	-0.003	-0.024	-0.042
Main Model - Polarized Ideology	0.085	0.161	0.107	0.163	0.285
Republicans					
Main Model - No Whipping	-0.011	-0.016	-	-	-
Main Model - Polarized Ideology	-0.057	-0.048	-	-	-

• Increase in ideological polarization results in more extreme policies: farther left for Democrats, farther right for Republicans

-∢∃>

- CKT find that approximately 40% of polarization is due to party discipline
 - institutional changes may reduce party power
- The effects of polarization are complex due to the endogeneity of policies
 - a reduction in party discipline reduces the probability of bills passing
 - a reduction in ideological polarization results in less extreme bills being proposed
- Methodology allows (under some assumptions) to 'de-bias' ideological estimates even in the absence of whip count data
 - preliminary results suggest party power has grown over time (in line with the scholarly view)

∃ ► < ∃ ►</p>

- Sample period constrained to 1977-1986. We need to generalize: Is party discipline the story for political polarization in the 20th century and now?
- DW-Nominate score allows for *two* policy dimensions, which is important for the whole period between 1940-1980 with the Southern Democrats:
 - Liberal-Conservative
 - 2 Civil rights Voting Rights
- See Canen, Kendall and Trebbi (2020)

- The typical analysis of political polarization extends to the late 1800's
- We do not have careful whip counts for the entire period (Evans 2018)
- We can lever on additional data though: The direction of voting by the leadership
- It tells us which way the parties are whipping
- There are three main cases to consider: (i) *D* leadership votes Yes and *R* leadership votes No; (ii) *D* leadership votes No and *R* leadership votes Yes; (iii) *D* leadership votes Yes and *R* leadership votes Yes

Relaxing Data Requirements (Cont.)

Relaxing Data Requirements (Cont.)

- Let Y_{it} be a random variable taking value 1 if at t politician i votes Yes in favor of x_t, conditional on q_t having been selected for consideration (i.e. q_t ∈ Q_p¹) by party p, and 0 if i votes No
- Let w_{p,t} indicate the direction of whipping by the leadership on the bill (as per previous figure)
- The probability of *i* supporting an alternative x_t versus the status quo q_t is then:

$$\begin{aligned} & \mathsf{Pr}\left(Y_{it} = 1 | q_t \in Q_p^1, x_t; \theta, y^{max}\right) = \\ & = \mathsf{Pr}\left(u\left(x_t, \theta^i\right) \ge u\left(q_t, \theta^i\right) | q_t \in Q_p^1, x_t; \theta, y^{max}\right) \\ & = \mathsf{Pr}\left(\varepsilon_t^i \le \frac{x_t + q_t}{2} - \theta^i - w_{p,t} \times y_p^{max} | q_t \in Q_p^1, x_t; \theta, y^{max}\right) \\ & = G\left(m_t - \theta^i - w_{p,t} \times y_p^{max} | q_t \in Q_p^1, x_t; \theta, y^{max}\right), \end{aligned}$$

where we define $m_t = \frac{x_t + q_t}{2}$ for notational convenience.

Intuition for Identification Through Whipping Direction

• Consider three bills, t = 1, 2, 3, such that in bill 1 both parties whip in the same direction to the right, in bill 2 D and R whip in opposite directions, and in bill 3 both parties whip left.

Then,

$$MV_{1,R} - MV_{1,D} = m_1 + y_R^{max} - (m_1 + y_D^{max}) = y_R^{max} - y_D^{max}$$
(1)

and

$$MV_{2,R} - MV_{2,D} = m_2 + y_R^{max} - (m_2 - y_D^{max}) = y_R^{max} + y_D^{max}$$
(2)

and

$$MV_{3,R} - MV_{3,D} = m_3 - y_R^{max} - (m_3 - y_D^{max}) = y_D^{max} - y_R^{max}.$$
(3)

Party Discipline 70th-115th

Distance Between Party Medians 70th-115th

Trebbi

61/64

표 문 표

Ideologies 70th v. 115th

62 / 64

æ

э.

Ideologies 70th v. 115th

Trebbi

୬ ୯.୧ 63 / 64

æ

-≣->

< (T) >

- Still preliminary, but shows promise as improvement over DW-Nominate
- We are working on extending to 2 dimensions. This part of Canen, Kendall and Trebbi (2020) is even more preliminary, so please bear with me
- Historical record in Congress appears to support our findings