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Improving Context Modeling in Neural Topic Segmentation

Anonymous AACL-IJCNLP submission

Abstract

Topic segmentation is critical in key NLP tasks
and recent works favor highly effective neu-
ral supervised approaches. However, current
neural solutions are arguably limited in how
they model context. In this paper, we enhance
a segmenter based on a hierarchical attention
BiLSTM network to better model context, by
adding a coherence-related auxiliary task and
restricted self-attention. Our optimized seg-
menter outperforms SOTA approaches when
trained and tested on three datasets. We also
demonstrate our proposal’s robustness in do-
main transfer setting by training a model on
a large-scale dataset and testing it on four chal-
lenging real-world benchmarks. Furthermore,
we apply our proposed strategy to two other
languages (German and Chinese) and show its
effectiveness in multiligual scenario.

1 Introduction

Topic segmentation is a fundamental NLP task
that has received considerable attention in recent
years. It can reveal important aspects of a doc-
ument semantic structure by splitting the docu-
ment into topical-coherent textual units. Taking
the Wikipedia example in Table 1, without the sec-
tion marks, a reliable topic segmenter should be
able to detect the correct boundaries within the
text and chunk this article into the topical-coherent
units T1, T2 and T3. The results of topic segmen-
tation can further benefit other key downstream
NLP tasks such as document summarization (Mi-
tra et al., 1997; Riedl and Biemann, 2012a; Xiao
and Carenini, 2019), question answering (Oh et al.,
2007; Diefenbach et al., 2018) and machine reading
(van Dijk, 1981; Saha et al., 2019).

A wide variety of techniques have been proposed
for topic segmentation. Early unsupervised mod-
els exploit word statistic overlaps (Hearst, 1997;
Galley et al., 2003), Bayesian contexts (Eisenstein

Preface:
Marcus is a city in Cherokee County, Iowa, United States.
[T1] History:
S1: The first building in Marcus was erected in 1871.
S2: Marcus was incorporated on May 15, 1882.
[T2] Geography:
S3: Marcus is located at (42.822892, -95.804894).
S4: According to the United States Census Bureau, the
city has a total area of 1.54 square miles, all land.
[T3] Demographics:
S5: As of the census of 2010, there were 1,117 people, 494
households, and 310 families residing in the city.
... ...

Table 1: A Wikipedia sample article about City Marcus
covering three topics: T1, T2 and T3

and Barzilay, 2008) or semantic relatedness graphs
(Glavaš et al., 2016) to measure the lexical or se-
mantic cohesion between the sentences or para-
graphs and infer the segment boundaries from them.
More recently, several works have framed topic seg-
mentation as neural supervised learning, because
of the remarkable success achieved by such mod-
els in most NLP tasks (Wang et al., 2016, 2017;
Sehikh et al., 2017; Koshorek et al., 2018; Arnold
et al., 2019). Despite minor architectural differ-
ences, most of these neural solutions adopt Recur-
rent Neural Network (Schuster and Paliwal, 1997)
and its variants (RNNs) as their main framework.
On the one hand, RNNs are appropriate because
topic segmentation can be modelled as a sequence
labeling task where each sentence is either the end
of a segment or not. On the other hand, this choice
makes these neural models limited in how to model
the context, because RNNs are designed to cap-
ture long-distance information (Lipton et al., 2015;
Sehikh et al., 2017; Wang et al., 2018), while for
topic segmentation, it is also critical to supervise
the model to focus more on the local context.

As illustrated in Table 1, the prediction of the
boundary between T1 and T2 hardly depends on
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the content in T3. Bringing in excessive long-
distance signals may cause unnecessary noises
and hurt performance. Moreover, text coherence
has strong relation with topic segmentation (Wang
et al., 2017; Glavas and Somasundaran, 2020). For
instance, in Table 1, sentence pairs from the same
segment (like <S1, S2> or <S3, S4>) are more
coherent than sentence pairs across segments (like
S2 and S3). Arguably, with a proper way of mod-
eling the coherence between adjacent sentences,
topic segmenter can be further enhanced.

In this paper, we propose to enhance a SOTA
topic segmenter (Koshorek et al., 2018) based on
a hierarchical attention BiLSTM network to bet-
ter model the local context of a sentence in two
complementary ways. First, we add a coherence-
related auxiliary task to make our model learn more
informative hidden states for all the sentences in a
document. More specifically, we refine the objec-
tive of our model to encourage that the coherence
of the sentences from different segments is smaller
than the coherence of the sentences from the same
segment. Secondly, we enhance context modeling
by utilizing restricted self-attention (Wang et al.,
2018), which enables our model to pay attention
to the local context and make better use of the in-
formation from the closer neighborhood of each
sentence (i.e., with respect to a window of explic-
itly fixed size k). Our empirical experimental re-
sults show (1) that our proposed context modeling
strategy significantly improves the performance
of the SOTA neural segmenter on three datasets,
(2) that the enhanced segmenter is more robust in
domain transfer when applied to four challenging
real-world test sets sampled differently from the
training data, (3) that our context modeling strategy
is also effective for the segmenters trained on other
challenging languages (eg., German and Chinese)
rather than just English.

2 Related Work

Topic Segmentation Early unsupervised models
exploit the lexical overlaps of sentences to mea-
sure the lexical cohesion between the sentences
or paragraphs (Hearst, 1997; Galley et al., 2003;
Eisenstein and Barzilay, 2008; Riedl and Biemann,
2012b). Then, by moving two sliding windows
over text, the cohesion between successive text
units could be plotted and a cohesion drop would
signal a segment boundary. Even if these models
do not require any training data, they only show

limited performance in practice.

More recently, neural-based supervised methods
have been devised for topic segmentation because
of their more accurate predictions and greater effi-
ciency. One line of research frames topic segmenta-
tion as a sequence labeling problem and builds neu-
ral models to predict segment boundaries directly.
Wang et al. (2016) proposed a simple BiLSTM
model to label if a sentence is a segment boundary
or not. They demonstrated that along with engi-
neered features based on cue phrases (eg., ‘first of
all’, ‘second’), their model can achieve marginally
better performance than early unsupervised meth-
ods. Later, Koshorek et al. (2018) proposed a
hierarchical neural sequence labeling model for
topic segmentation and showed its superiority com-
pared with their selected supervised and unsuper-
vised baselines. Around the same time, Badjatiya
et al. (2018) proposed an attention-based BiLSTM
model to classify whether a sentence was a seg-
ment boundary or not, by considering the context
around it. The work we present in this paper can
be seen as pushing this line of research even fur-
ther by encouraging the model to more explicitly
consider contextual coherence, as well as to ab-
sorb more information from the neighbor context
through restricted self-attention.

Another rather different line of works first trains
neural models for other tasks, and then uses these
models’ outputs to predict boundaries. Wang et al.
(2017) trained a CNN network to predict the coher-
ence scores for text pairs. Sentences in a pair with
large cohesion are supposed to belong to the same
segment. However, their “learning to rank” frame-
work asks for the pre-defined number of segments,
which limits their model’s applicability in practice.
Our selected framework overcomes this constraint
by tuning a confidence threshold during training
stage. A sentence with the output probability over
this threshold will be predicted as the end of a seg-
ment. Following a very different approach, Arnold
et al. (2019) introduced a topic embedding layer
into a BiLSTM model. After training their model
to predict the sentence topics, the learned topic
embeddings can be utilized for topic segmentation.
However, one critical flaw of their method is that
it requires a complicated pre-processing pipeline,
which includes heading extraction and synset clus-
tering, whose errors can propagate to the main topic
segmentation task. In contrast, our proposal only
requires the plain content of the training data and its
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Figure 1: The architecture of our basic model. sei is
the produced sentence embedding for sentence Si.

fully integrated neural architecture does not involve
any complex pre-processing.

Coherence Modeling Early works on coherence
modeling merely predict the coherence score for
documents by tracking the patterns of entities’
grammatical role transition (Barzilay and Lapata,
2005, 2008). More recently, researchers started
modeling the coherence for sentence pairs by their
semantic similarities and used them for higher level
coherence prediction or even other tasks, including
topic segmentation. Wang et al. (2017) demon-
strated the strong relation between text-pair co-
herence modeling and topic segmentation. They
assumed that (1) a pair of texts from the same doc-
ument should be ranked more coherent than a pair
of texts randomly picked from different documents;
(2) a pair of texts from the same segment should
be ranked more coherent than a pair of texts picked
from different segments of a document. With these
assumptions, they created a ”quasi” training cor-
pus for text-pair coherence prediction by assigning
different coherence scores to the texts from the
same segment, different segments but the same
document, and different documents. Then they pro-
posed the corresponding model, and further use
this model to directly conduct topic segmentation.
Following their second assumption, in this paper
we propose a neural solution in which by injecting
a coherence-related auxiliary task, topic segmen-
tation and sentence level coherence modeling can
mutually benefit each other.

3 Neural Topic Segmentation Model

Since RNN-based topic segmenters have shown
success with high-quality training data, we adopt

a SOTA RNN-based topic segmenter enhanced
with attention and BERT embeddings as our basic
model. Then, we extend such model to make better
use of the local context, something that cannot be
done effectively within the RNN framework (Wang
et al., 2018). In particular, we add a coherence-
related auxiliary task and a restricted self-attention
mechanisms to the basic model, so that predictions
are more strongly influenced by the coherence be-
tween nearby sentences. As a preview of this sec-
tion, we first define the problem of topic segmen-
tation and introduce the basic model. Next, we
motivate and describe our proposed extensions.

3.1 Problem Definition

Topic segmentation is naturally framed as a se-
quence labeling task. More precisely, given a docu-
ment represented as a sequence of sentences, our
model will predict the binary label for each sen-
tence to indicate if the sentence is the end of a
topical coherent segment or not. Formally,
Given: A document d in the form of a sequence of
sentences {s1, s2, s3, ..., sk}.
Predict: A sequence of labels assigned to all the
sentences {l1, l2, l3, ..., lk−1}, where l is a binary
label, 1 means the corresponding sentence is the
end of a segment, 0 means the corresponding sen-
tence is not the end of a segment. We do not predict
label for the last sentence sk since it is always the
end of the last segment.

3.2 Basic Model: Enhanced Hierarchical
Attention Bi-LSTM Network (HAN)

Figure 1 illustrates the detailed architecture of our
basic model comprising the two standard steps of
sentence encoding and label prediction. Formally,
a sentence encoding network returns sentence em-
beddings from pre-trained word embeddings of sen-
tences. Then a label prediction network processes
the sentence embeddings generated earlier and out-
puts the probabilities to indicate if sentences are
the segment boundaries or not. Finally, to convert
the numerical probabilities into binary labels, we
follow the greedy decoding strategy in Koshorek
et al. (2018) by setting a threshold τ . All the sen-
tences with probabilities over τ will be labeled 1,
and 0 otherwise. This parameter τ is set in the
validation stage. For training, we compute the
cross-entropy loss between the ground truth labels
Y = {y1, ..., yk−1} and our predicted probabili-
ties P = {p1, ..., pk−1} for a document with k
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Figure 2: Our topic segmentation model with context modeling components: restricted self-attention (green),
auxiliary task module (red).

sentences:

L1 =

k−1∑
i=1

[−yi log pi − (1− yi) log(1− pi)] (1)

Looking at the details of the architecture in Fig-
ure 1, our basic model constitutes a strong baseline
by extending the segmenter presented in Koshorek
et al. (2018) in two ways (colored parts); namely,
by improving the sentence encoder with an atten-
tion mechanism (orange) and with BERT embed-
dings (blue).
Enhancing Task-Specific Sentence Representa-
tions - While Koshorek et al. (2018) applied max-
pooling to build sentence embeddings from sen-
tence encoding network, we applied an attention
mechanism (Bahdanau et al., 2015; Yang et al.,
2016) to make the model better capture task-wise
sentence semantics. The benefit of this enhance-
ment were verified empirically (see Appendix A).
Enhancing Generality with BERT Embeddings
In order to better deal with unseen text in test data
and hence improve model’s generality, we utilize
a pre-trained BERT sentence encoder1 which com-
plements our sentence encoding network. The
transformer-based BERT model (Devlin et al.,
2019) was trained on massive data on several
generic sentence-level semantic tasks, such as Nat-
ural Language Inference and Question Answering,

1github.com/hanxiao/bert-as-service. For
languages other than English, we use their corresponding pre-
trained BERT models.

which implies that it can arguably capture more
general aspects of sentence semantics in a reliable
way. To combine task-specific information with
generic semantic signals from BERT, we simply
concatenate the BERT sentence embeddings with
the sentence embeddings derived from our encoder.
Such concatenation is then the input of the next
level network (see Figure 1). The benefit of this
integration were also verified empirically (see Ap-
pendix A).

3.3 Auxiliary Task Learning
In a well-structured document, the semantic co-
herence of a pair of sentences from the same seg-
ment should be greater than the coherence of a
pair of sentences from different segments. This
observation provides us with an alternative way to
enable better context modeling by formulating a
coherence-related auxiliary task whose objective
can be jointly optimized with our original objective
(Equation 1). This task is to predict the consecu-
tive sentence-pair coherence by using the sentence
hidden states generated from the BiLSTM network.
Concurrently minimizing the loss of this task can
regulate our model to reduce the semantic coher-
ence between segments and increase the semantic
coherence within a segment.

To obtain the ground truth of our introduced aux-
iliary task (sentence-pair coherence prediction), we
leverage the ground truth of our segmented training
set rather than requiring external annotations. For
a document which contains m sentences, there are

github.com/hanxiao/bert-as-service
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m− 1 consecutive sentence pairs. If this document
has n segment boundaries, then among those m−1
sentence pairs, n sentence pairs are from different
segments, while the remaining m−n− 1 sentence
pairs are from the same segment. In order to mini-
mize the coherence of the sentences from different
segments and maximize the coherence of the sen-
tences in the same segment, we give a sentence
pair spi =< si, si+1 > a coherence label li = 1 if
sentences in spi are from the same segment, and
li = 0 otherwise. The embeddings ei and ei+1 of
adjacent sentences pairs < si, si+1 > used for co-
herence computing are calculated from BiLSTM
forward and backward hidden states

−→
h and

←−
h .

ei = tanh(We(
−→
hi −

−−→
hi−1) + be) (2)

ei+1 = tanh(We(
←−−
hi+1 −

←−−
hi+2) + be) (3)

However, notice that instead of using the conven-
tional [

−→
hi ;
←−
hi ] as the embedding of sentence i, here,

similarly to Wang and Chang (2016), we subtract
forward/backward states to focus on the seman-
tics of sentences in the current sentence pair. The
semantic coherence between two sentence embed-
dings is then computed as the sigmoid of their co-
sine similarity:

Cohi = σ(cos(ei, ei+1)) (4)

We use binary cross-entropy loss to formulate
the objective of our auxiliary task. For a document
with k sentences, the loss can be calculated as:

L2 = −
k−1∑

i=1,li=1

logCohi−
k−1∑

i=1,li=0

log(1−Cohi)

(5)
which penalizes high Coh across segments and low
Coh within segments.

Combining Equation 1 and 5, we form the loss
function of our new segmenter as:

Ltotal = αL1 + (1− α)L2 (6)

with the well-tuned trade-off parameter α, topic
segmentation and the coherence-related auxiliary
task are jointly optimized. The architecture of the
auxiliary task module and its integration in our
segmenter is shown in red in Figure 2.

3.4 Sentence-Level Restricted Self-Attention
The self-attention mechanism (Vaswani et al.,
2017) has been widely applied to many sequence la-
beling tasks due to its superiority in modeling long-
distance dependencies in text. However, when the

task mainly requires modelling local context, long-
distance dependencies will instead cause noise.
Wang et al. (2018) noticed this problem in dis-
course segmentation, where the crucial informa-
tion for a clause-like Elementary Discourse Unit
(EDU) boundary prediction comes usually only
from the adjacent EDUs. Thus, they proposed
a word-level restricted self-attention mechanism
by adding a fixed size window constraint on the
standard self-attention. In essence, this mecha-
nism encourages the model to absorb more infor-
mation directly from adjacent context words within
a fixed range of neighborhood. We hypothesize that
similar restricted dependencies also play a domi-
nant role in topic segmentation. Hence, we add
a sentence-level restricted self-attention on top of
the label prediction network of the basic model, as
shown in green in Figure 2.

In particular, once hidden states are obtained for
all the sentences of document d, we compute the
similarities between the current sentence i and its
nearby sentences within a window of size S. For
example, the similarity between sentence si and sj
which is within the window size is computed as:

simi,j =Wa[hi;hj ; (hi � hj)] + ba (7)

where hi, hj are the hidden state of si and sj . Wa

and ba are both attention parameters. ; is the con-
catenation operation. The attention weights for all
the sentences in the fixed window are:

ai,j =
esimi,j∑S

s=−S e
simi,i+s

(8)

The output for sentence i after the restricted self-
attention mechanism is the weighted sum of all the
sentence hidden states within the window:

ci =

S∑
s=−S

ai,i+shi+s (9)

where ci denotes the local context embedding of
sentence i generated by restricted self-attention. Af-
ter getting the local context embeddings for all the
sentences, we concatenate them with the original
sentence hidden states and input them to another
BiLSTM layer (top of Figure 2).

4 Experimental Setup

In order to comprehensively evaluate the effective-
ness of our context modeling strategy of adding
a coherence-related auxiliary task and a restricted
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Dataset CHOI RULES SECTION WIKI-50 CITIES ELEMENTS CLINICAL
documents 920 4,461 21,376 50 100 118 227
# sent/seg 7.4 7.4 7.2 13.6 5.2 3.3 28.0
# seg/doc 10.0 16.6 7.9 3.5 12.2 6.8 5.0
real world

Table 2: Statistics of all the English topic segmentation datasets used in our experiments.

Dataset EN DE ZH
documents 21,376 12,993 10,000
# sent/seg 7.2 6.3 5.1
# seg/doc 7.9 7.0 6.4
real world

Table 3: Statistics of the the WIKI-SECTION data in
English(EN), German(DE) and Chinese(ZH).

self-attention mechanisms to the basic model, we
conduct three sets of experiments: (i) Intra

Domain : we train and test the models in the same
domain, repeating this evaluation for three different
domains (datasets). (ii) Domain Transfer : we
train the models on a large dataset which covers a
variety of topics and test them on four challenging
real-world datasets. (iii) Multilingual : we
train and test our model on three datasets in dif-
ferent languages (English, German and Chinese),
to assess our proposed strategy’s generality in the
multilingual scenario.

4.1 Datasets
Data for Intra Domain Evaluation High quality
training dataset for topic segmentation usually sat-
isfies the following criteria: (1) large size; (2) cover
many topics; (3) contains real documents with reli-
able segmentation either from human annotations
or already specified in the documents e.g., sections.
In order to comprehensively evaluate the effective-
ness of our context modeling strategy when dealing
with data of different quality, we train and test mod-
els on the following three datasets:
CHOI (Choi, 2000) whose articles are synthesized
artificially by stitching together different sources
(i.e., they were not written as one document by one
author). Hence, it does not reflect naturally occur-
ring topic drifts. While the quality of this dataset
is low, it is a popular benchmark for topic segmen-
tation evaluation. We include this dataset to allow
comparison with the previous work.
RULES is a new dataset we collected from the U.S.
Federal Register issues2. When U.S. federal agen-

2https://www.govinfo.gov/

cies make changes to regulations or other policies,
they must publish a document called a “Rule” in
the Federal Register. The Rule describes what is be-
ing changed and discusses the motivation and legal
justification for the action. Since each paragraph
in a document discusses one topic, we consider
the last sentence of each paragraph as a ground
truth topic boundary. The discussion paragraphs
cover diverse topics in complex formal, technical
language that can be hard to find online, so we
deem it as an additional well-labelled dataset for
testing topic segmentation to complement our other
datasets which contain more informal language.
WIKI-SECTION (Arnold et al., 2019) is a newly
released dataset which was originally gener-
ated from the most recent English and German
Wikipedia dumps. To better align with the pur-
pose of intra domain experiment, we only select
the English samples for training and the German
samples will be used in multilingual evaluation.
The English WIKI-SECTION (labeled SECTION
in the tables) consists of wikipedia articles from
domain diseases and cities. We deem this dataset
as the most reliable training source among the three
datasets. It has the largest size and the two domains
(cities and diseases) cover news-based samples and
scientific-based samples respectively.

We split CHOI and RULES into 80% for train-
ing, 10% for validation and 10% for testing. For
SECTION, we follow Arnold et al. (2019) and split
it into 70% training, 10% validation, 20% test sets.
Table 2(left) contains the statistical details for these
three sets.

Data for Domain Transfer Evaluation We pick
WIKI-SECTION as our training set in this line of ex-
periments, due to its largest size and variety of cov-
ered topics. Following previous work, we evaluate
our model and baselines on four datasets that origi-
nate from different source distributions: WIKI-50
(Koshorek et al., 2018) which consists of 50 sam-
ples randomly generated from the latest English
Wikipedia dump, with no overlap with training and
validation data. Cities (Chen et al., 2009) which
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Dataset CHOI RULES SECTION MEAN
Random 49.4 50.6 51.3 50.4
BayesSeg 20.8 41.5 39.5 33.9
GraphSeg 6.6 39.3 44.9 30.3
TextSeg 1.0 7.7 12.6 7.1
Sector - - 12.7 -
Transformer 4.8 9.6 13.6 9.3
Basic Model 0.81 7.0 11.3 6.4
+AUX 0.64† 6.1† 10.4† 5.7
+RSA 0.72† 6.3† 10.0† 5.7
+AUX+RSA 0.54† 5.8† 9.7† 5.3

Table 4: Pk error score on four test sets. Results in
bold indicate the best performance across all compar-
isons. Underlined results indicate the best performance
in the bottom section. † indicates the result is signifi-
cantly different (p < 0.05) from basic model.

consists of 100 samples generated from Wikipedia
about cities. We also ensure that this dataset has
no overlap with training and validation data. El-
ements (Chen et al., 2009) which consists of 118
samples generated from Wikipedia about chemical
elements. Clinical Books (Malioutov and Barzilay,
2006) which consists of 227 chapters from a med-
ical textbook. Table 2(right) gives more detailed
statistics for these datasets.
Data For Multilingual Evaluation In order to test
the effectiveness of our context modeling strat-
egy across languages, besides the English WIKI-
SECTION, we train and test our model on two other
Wikipedia datasets in German and Chinese:
SECTION-DE which was released together with
English WIKI-SECTION in Arnold et al. (2019). It
also contains articles about cities and diseases. The
section marks are used as the ground truth labels.
SECTION-ZH which was randomly generated
from the Chinese Wikipedia dump3. As before,
section marks are also used here as ground truth
boundaries. The statistical details of these two
datasets can be found in Table 3.

4.2 Baselines
These include two popular unsupervised topic
segmentation methods, BayesSeg (Eisenstein and
Barzilay, 2008) and GraphSeg (Glavaš et al., 2016),
as well as the three recently proposed supervised
neural models, TextSeg (Koshorek et al., 2018), Sec-
tor (Arnold et al., 2019) and Hierarchical Trans-
former (labeled Transformer in the tables) (Glavas
and Somasundaran, 2020). We use the original
implementation code of BayesSeg, GraphSeg and

3https://linguatools.org/tools/corpora/wikipedia-
monolingual-corpora/

TextSeg. We reimplement the Hierarchical Trans-
former by ourselves. In Table 5, we adopt the
results of BayesSeg, GraphSeg and Sector on four
test sets from Arnold et al. (2019)4.

4.3 Evaluation Metric
We use the standard Pk error score (Beeferman
et al., 1999) as our evaluation metric, since it has be-
come the standard for comparing topic segmenters.
Pk is calculated as:

Pk(ref, hyp) =
n−k∑
i=0

δref (i, i+ k) 6= δhyp(i, i+ k)

where δ is an indicator function which is 1 if sen-
tence i and i + k are in the same segment, 0 oth-
erwise. It measures the probability of mismatch
between the ground truth segments (ref ) and model
predictions (hyp) within a sliding window k. Win-
dow size k is the average segment length of ref.
Since Pk is a penalty metric, lower score indicates
better performance.

4.4 Neural Model Setup
Following Koshorek et al. (2018), our initial word
embeddings are GoogleNews word2vec (d = 300).
We also use word2vec embeddings (d = 300) and
Fasttext embeddings (d = 300), which are both
derived from Wikipedia corpora for German and
Chinese respectively. We use the Adam optimizer,
setting the learning rate to 0.001 and batch size to
8. The BiLSTM hidden state size is 256 following
Koshorek et al. (2018). Model training is done
for 10 epochs and performance is monitored over
the validation set. We generate BERT sentence
embeddings with the pre-trained 12-layer model
released by Google AI (embedding size 768). The
window size of restricted self-attention is 3 and α
is 0.8. These were tuned on the validation set.

5 Results and Discussion

5.1 Intra Domain Evaluation
Table 4 shows the models’ performance on the three
datasets, when all supervised models are trained
and evaluated on the training and test set from the
same domain. To investigate the effectiveness of
auxiliary task (AUX) and restricted self-attention
(RSA), Table 4 also shows the results of individu-
ally adding each component to our basic segmenter.

4Arnold et al. (2019) reported Sector’s performance on
multiple model settings. Here we pick the best performance
of their model on each test set despite the setting difference.
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Dataset Wiki-50 Cities Elements Clinical
Random 52.7 47.1 50.1 44.1
BayesSeg 49.2 36.2 35.6 57.2
GraphSeg 63.6 40.0 49.1 64.6
TextSeg 28.5 19.8 43.9 36.6
Sector 28.6 33.4 42.8 36.9
Transformer 29.3 20.2 45.2 35.6
Basic Model 28.7 17.9 43.5 33.8
+AUX 27.9 17.0† 41.8† 31.5†

+RSA 27.8† 16.8† 42.7 31.9†

+AUX+RSA 26.8† 16.1† 39.4† 30.5†

Table 5: Pk error score on four test sets. Results in
bold indicate the best performance across all compar-
isons. Underlined results indicate the best performance
in the bottom section. † indicates the result is signifi-
cantly different (p < 0.05) from basic model.

The most important observation from the table is
that our model enhanced by context modeling out-
performs all the supervised and unsupervised base-
lines with a substantial performance gain. With our
context modeling strategy, the average Pk scores of
our model over the three datasets improves on the
best model (TextSeg) among the baselines by 25%.
Compared with the basic model, adding AUX or
RSA equally gives significant and consistent im-
provement across all three sets. Adding both AUX
and RSA results in the biggest improvement by up
to 17% on the mean across the three datasets.

5.2 Domain Transfer Evaluation

Table 5 compares the performance of the baselines
and our model on four challenging real-world test
datasets. All supervised models are trained on the
training set of WIKI-SECTION. One important ob-
servation is that our model enhanced by context
modeling outperforms all the baseline methods on
three out of four test sets with a substantial per-
formance gap. Admittedly, BayesSeg performs
better on Elements, possibly because that merely
word embedding similarity is sufficient to indi-
cate segment boundaries in this dataset. However,
BayesSeg is completely dominated by our model
on the other test sets. Overall, this indicates that
our proposed context modeling strategy can not
only enhance the model under the intra domain
setting, but also produce robust models that trans-
fer to other unseen domains. Furthermore, we ob-
serve that AUX and RSA are both necessary for our
model, since they do not only improve performance
individually, but they achieve the best results when
synergistically combined.

Dataset EN DE ZH
Random 51.3 48.7 52.2
Basic Model 11.3 18.2 20.5
+AUX 10.4† 17.7 20.5
+RSA 10.0† 16.6† 19.8†
+AUX+RSA 9.7† 15.9† 20.0†

Table 6: Pk error score on the datasets in three lan-
guages (English, German and Chinese).

5.3 Multilingual Evaluation

Table 6 shows results for our context modeling strat-
egy across three different languages: English (EN),
German (DE) and Chinese (ZH). Remarkably, even
our basic model without any add-on component
outperforms the random baseline by a wide mar-
gin. Looking at the gains from AUX and RSA,
for German we observe a pattern similar to En-
glish, with our complete context modeling strategy
(AUX+RSA) delivering the strongest gains. How-
ever, the performance on Chinese is not as strong
as on English and German. Employing RSA still
achieves a significant 0.7 Pk score drop, but intro-
ducing AUX does not help. One possible reason is
that the sentences in the Chinese Wikipedia pages
are relatively short and fragmented. Thus, the se-
mantics of these sentences may be too simple to
sufficiently guide the coherence auxiliary task.

6 Conclusions and Future Work

We address a serious limitation of current neural
topic segmenters, namely their inability to effec-
tively modelling context. To this end, we propose
a novel neural model that adds a coherence-related
auxiliary task and restricted self-attention on top
of a hierarchical BiLSTM attention segmenter to
to make better use of the contextual information.
Experimental results on three datasets show that
our strategy is effective within domains. Further,
results on four challenging real-world benchmarks
demonstrate its effectiveness in domain transfer
settings. Finally, the application to other two lan-
guages (German and Chinese) suggests that our
strategy has potential in multilingual scenarios.

As future work, we will investigate whether our
proposed context modeling strategy is also effective
for segmenting dialogues (Takanobu et al., 2018).
Secondly, we will explore how to capture even
more accurate and informative contextual informa-
tion by integrating document structures generated
by discourse parsers (Huber and Carenini, 2019).
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Appendix A: Architecture Comparison for
Baisc Model

Table 7 shows that replacing the max-pooling with
the attention based BiLSTM sentence encoder
yields better performance. Also, the concatenation
of BERT embedding and the output of Att-BiLSTM
yields the best performance compared with only
one of them respectively.

Dataset CHOI RULES SECTION MEAN
MaxPooling 1.04 7.74 12.62 7.14
BLSTM 0.92 7.47 11.60 6.66
BERT 0.93 8.35 12.08 7.12
BLSTM+BERT 0.81 6.90 11.30 6.34

Table 7: Pk error score (lower the better, see Sec-
tion 4.3 for details) of different sentence encoding
strategies on three datasets (Section 4.1). Results in
bold are the best performance across the comparisons.


