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Abstract

Insurgency and guerrilla warfare impose enormous socio-economic costs and

often persist for decades. The opacity of such forms of conflict is an obsta-

cle to effective international humanitarian intervention and development pro-

grams. To shed light on the internal organization of otherwise unknown insur-

gent groups, this paper proposes two methodologies for the detection of unob-

served coalitions of militant factions in conflict areas. These approaches are

based on daily geocoded incident-level data on insurgent attacks. We provide

applications to the Afghan conflict during the 2004-2009 period and to Pakistan

during the 2008-2011 period, identifying systematically different coalition struc-

tures. Applications to global terrorism data and identification of new groups or

shifting coalitions are discussed.
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1 Introduction

Among the many political sources of welfare loss, few compare in magnitude to

military conflict and, in the post World War II period in particular, to the losses

ascribed to civil war and insurgency [O’Neill, 1990; Collier, 2007]. Insurgency, defined

as armed rebellion against a central authority,1 is also one of the most opaque forms

of conflict. Intertwining connections with the population blur the lines between com-

batants and civilians [Kilcullen, 2009]. The relative strength and even the identity

of potential negotiating counterparties are often unclear, and in the words of Fearon

[2008] “there are no clear front lines.” Such forms of conflict have disproportionately

affected poor countries and are gaining central status in the literature on the political

economy of development.2

In this paper we provide methods of identifying the unknown structure of insurgent

groups and then use these methods to detect changes in group structure beyond what

is reported in the best publicly available datasets. When faced with violent incidents

in multiple regions, we show how to recover unknown insurgent groups’ number and

location from microlevel attack data. We demonstrate how these methods translate

into applications such as the detection of shifts in alliances and the emergence of

divisions among insurgent groups over time, the early identification of unknown rebel

groups, and the validation of geographical information on group boundaries.

Empirically, we focus on the costly insurgencies of Afghanistan and Pakistan.3

On the U.S. side alone, Afghan operations cost the lives of more than 1, 800 troops

between 2001 and 2011, and more than $444 billion in military expenses. Statistics for

Afghan civilians appear less certain, but the adverse effects are painfully obvious even

to the casual observer. In Pakistan, sectarian insurgencies have led to 18, 583 dead

and 19, 356 wounded between 2012 and 2015 alone [Pak Institute for Peace Studies,

2016], and have diverted resources away from development assistance programs and

public goods provision.

In Pakistan the ethnic basis of insurgent groups is well known. In Afghanistan,

1According to O’Neill [1990] “Insurgency may be defined as a struggle between a nonruling group
and the ruling authorities in which the nonruling group consciously uses political resources (e.g.,
organizational expertise, propaganda, and demonstrations) and violence to destroy, reformulate, or
sustain the basis of one or more aspects of politics.”

2See Blattman and Miguel [2010], Berman and Matanock [2015], and König et al., [2017].
3Unfortunately, we are not aware of suitable data for Syria. In Appendix A we further discuss

the case cases of Iraq, Syria, and Libya, all instances where our methodologies could be potentially
of use.
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however, there is a serious disagreement about whether the Taliban was a unified orga-

nization or whether it was rather an umbrella coalition of heterogeneous forces during

2004-2009. Some policymakers and researchers were skeptical of the degree of con-

trol that Taliban leader Mullah Mohammed Omar exerted over the powerful Haqqani

Network and the Dadullah Front.4 Other observers, however, promoted an opposite

view. In an insightful qualitative essay Dorronsoro [2009] states: “The Taliban are

often described as an umbrella movement comprising loosely connected groups that are

essentially local and unorganized. On the contrary, this report’s analysis of the struc-

ture and strategy of the insurgency reveals a resilient adversary, engaged in strategic

planning and coordinated action”. Evidence in support of this position includes the

existence of the Layha (a centralized code of conduct for Mujahidin), as well as the

strong centralizing tendencies of the Obedience to the Amir (a manual endorsed by

Mullah Omar).5

A quantitative researcher faced with this disagreement might think of turning to a

standard database, such as the Worldwide Incidents Tracking System (WITS) or the

Global Terrorism Database (GTD), as both sources report (when possible) the group

that perpetrated each attack. For 2004-2009, both WITS and the GTD code most

attacks in Afghanistan as undifferentiated “Taliban”. The question, however, is not

whether the Taliban exist – this is not in dispute – but rather whether they represent

multiple agents, several independent decision makers loosely connected in name but

without a unitary strategy. Although WITS data ends in 2009, the GTD continues

to code attacks in 2010-2016 simply as “Taliban”. Using our method, we show that

while the 2004-2009 phase of the insurgency is best described by a unitary Taliban,

around 2013 the internal structure of the Taliban fragments into multiple groups.

4Christia [2012] indicates 4 warring groups in Afghanistan for 2002-2012. Smith [2005] believes
that the Taliban are “not a single monolithic movement, but a series of parallel groupings.” Christia
and Semple [2009] state explicitly that “the Taliban is not a unified or monolithic movement” and
Thruelsen [2010] writes that “the movement should not be seen as a unified hierarchical actor that
can be dealt with as part of a generic approach covering the whole of Afghanistan.”A UN report [2013]
stated that “despite what passes for a zonal command structure across Afghanistan, the Taliban have
shown themselves unwilling or unable to monopolize anti-State violence. The persistent presence
and autonomy of the Haqqani Network and the manner in which other, non-Taliban, groupings like
the Lashkar-e-Tayyiba are operating in Afghanistan raises questions about the true extent of the
influence exerted by the Taliban leadership.” Brahimi [2010] reports a statement by Ashraf Ghani,
current Afghan president, in a lecture for the Miliband Programme at LSE indicating “The Taliban
are not a unified force – they are not the SPLA in Sudan or the Maoists in Nepal” while Giustozzi
[2009] states that “the Taliban themselves are not fully united and the insurgency is not limited to
the Taliban.”

5These are available in English translation as Munir [2011] and Ludhianvi [2015], respectively.
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We do not employ data on the identity of perpetrators coded in the standard

sources, but instead use the informational content of certain types of attacks to reach

our conclusions. Insurgent groups with the ability to launch simultaneous and geo-

graphically separated attacks appear to do so: we make use of the specific covariance

structure that arises from these attacks. Our model thus relies on conclusions from the

existing literature about the propaganda and costly signaling value of launching com-

plex coordinated attacks – a mechanism that finds tragic support in the psychological

impact of events such 9/11, Mumbai, or the Bataclan.

We present our econometric model in Section 2. A country experiencing an insur-

gency is described as a set of districts in which violent incidents can occur each day.

Attacks on the same day in different districts will occur with greater-than-random

frequency if the same insurgent group is operating in these areas. Using a variety of

assumptions regarding what the reference cross-district covariance in attacks would

be in the case where there were no organized groups, we calculate which sets of dis-

tricts are more correlated than would be expected by chance alone. We then use this

information to estimate the cluster of districts in which each group operates. Our

proposed method complements and advances the literature on community detection

in networks [Copic, Jackson, and Kirman, 2009]. It is also related to the identifica-

tion of spatial patterns of interaction, such as the Ellison and Glaeser [1997] study of

economic agglomeration.6

We present estimation methods that allow for a single district to be contested

by multiple groups, or by a single group, or by no groups. Our methods provide

the number of insurgent groups operating, the geographic area of each of these, and

the intensity of each group’s activity in each district. The methods we present can

accommodate slow-moving trends in violence over time, and are robust to aggregate

shocks (such as weather, seasonality, or U.S. troop movements) that might affect

insurgent activity in many areas simultaneously.

We apply this method to data – described in Section 3 – on attacks in Afghanistan

6Ellison and Glaeser [1997] develop an index to evaluate whether a given industry is more geo-
graphically clustered than would be expected had plants been located at random. They then present
an index that can be used to consider whether two or more industries “coagglomerate” more than
would be expected by random chance. The availability of information about supply chain rela-
tionships across industry pairs (districts in our case), a crucial input in their approach, is a major
difference from our approach (where such latent relationships are not available and have to be es-
timated). Duranton and Overman [2005] use permutation tests to assess the statistical significance
of spatial clustering that they observe in a Ellison and Glaeser [1997] type model, in their case
considering individual industries in the UK.
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and Pakistan. We present the main results of this analysis in Section 4. We find that

for the 2004-2009 period insurgent activity in Afghanistan is best represented by a

single organized group rather than several independent groups. This result is robust

to constraining the analysis to districts with a number of incidents above specific

thresholds, to controlling for religious holidays, and to limiting the analysis to incidents

explicitly claimed by the Taliban. We also conduct an analysis of Pakistani insurgent

attacks, using multiple data sets for the period 2008-2011. In the case of Pakistan,

our methodology detects multiple insurgent groups (four, in fact) and is consistent

with the extant qualitative literature on insurgency in the country. We confirm our

results for both Afghanistan and Pakistan using GTD data.

Our approach can detect changes in insurgent organization not visible in the group

coding reported in standard publicly available sources. In Section 5 we show evidence

that one insurgent group in Pakistan (the Sindhudesh Liberation Army) can be identi-

fied by our methods as a coordinated entity almost one year before GTD indicates any

presence of coordinated attacks in Sindh. Using our tests, we also report quantitative

evidence of increasing fragmentation of the Afghan Taliban in the 2010-2016 period.

This change is not visible in standard database coding, such as perpetrator group en-

tries in GTD data. Our findings in this case potentially offer a simple explanation for

the disagreement in the qualitative literature discussed above: early on the Taliban

are basically a unified fighting force, but they become increasingly fragmented in the

aftermath of the death of their historical leader, Mullah Omar.

According to our econometric model, random attacks that occur without any co-

ordination should be approximately Poisson distributed. In Section 6, we look for

overdispersion relative to this Poisson in order to determine the extent and impor-

tance of insurgent coordination in attacks. We extend this analysis to the full panel

of 162 countries with geocoded attacks available in the GTD.

An increasing amount of attention has been devoted within the fields of develop-

ment economics and political economy to the study of armed conflict within countries,

in particular civil wars and insurgency. Both Political Science and Economics have

provided some of the most recent and novel insights in the study of insurgency.7 As

underlined by Blattman and Miguel [2010], a remarkable characteristic of this recent

wave of research has been a strong empirical bent and an increasing attention to mi-

7These include Berman [2009], Berman et al. [2011], Condra and Shapiro [2012], and Bueno de
Mesquita [2013]. Economists have been interested in the analysis of violence and conflict at least as
far back as Schelling [1960] and Tullock [1974].
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crolevel (typically incident-level) information. The use of geocoded micro data in this

area is a departure from more established “macro” empirical approaches, which were

based on country-level information or aggregate conflict information.

This paper is one in the new “micro” style, with a specific emphasis on the anal-

ysis of insurgency and small wars. Economic and statistical evidence on the role of

anti-government guerrilla activities is still sparse, even though such activities cause

substantial damage worldwide and appear from a quantitative perspective to be the

predominant form conflict in civil wars since 1945 [Fearon, 2008; Ghobarah et al.,

2003]. Insurgents’ strategies are generally not well understood, and neither are the

subtleties of their interactions with the noncombatant population [Gutierrez-Sanin,

2008; Kilcullen, 2009], nor their economic incentives [Berman et al. 2017]. A particu-

lar incentive for further study is that insurgent activity is also often linked to terrorist

activities, and thus there is a connection with the growing literature on the economics

of terrorism [Bueno de Mesquita and Dickson, 2007; Benmelech, Berrebi, Klor, 2012].

Some of this recent wave of research has also taken the direction, which we share, of

focusing on the network structure of conflict. One such recent example is the work on

the complex alliances in the post-Mubutu Congo wars studied by König et al. [2017],

while Horowitz and Potter [2014] focus on terrorist alliances and effects of attacks.

Importantly, both these papers take in their main analysis the organization of groups’

alliances and their structure as given,8 while our work explicitly does not. In fact, we

show how our methods can be used as an instrument of validation of data on alliances.

Our work is most related to the conflict studies literature focused on the internal

organization of insurgent and terrorist groups. Berman [2009] offers an analysis of

the internal management of defection risk within terrorist groups. Alliance formation

in 1978-1998 Afghanistan is studied in Christia [2012].9 What seems clear from the

conflict literature is that studying group organization may offer a useful perspective

in understanding insurgency. This is the main goal of the paper.

8König et al. [2017] include an extension where robustness to endogenous link formation is
provided.

9With specific emphasis on Afghanistan, Christia [2012, ch.3-5] studies in detail the dynamics of
ethnic alliances pre 9/11. Staniland [2014, ch.5] discusses the Taliban organization in the periods
1994-2001 and post 9/11. While the author discusses the Taliban as an “integrated organization”
with a defined centralized structure and unique leadership (p. 136-137), the presence of the Haqqani
Network and of Hezb-i Islami is also considered.
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2 Model

This paper relies on the fact that an insurgent group launches simultaneous attacks

when it is possible for it to do so. Simultaneous attacks are challenging to coordi-

nate, particularly because perpetrators risk detection by government agents as they

communicate regarding the attack: Shapiro [2013] details at length the trade-offs that

arise in limiting communications in order to avoid government forces. We thus believe

that these attacks are propaganda designed to signal an insurgent group’s strength. In

Appendix B we consider a setup where the strength of insurgent groups is unobserved,

and show how simultaneous attacks correspond to the signals in a Spence [1973] type

signalling model.

Below, we take as given the fact that insurgent groups launch simultaneous at-

tacks, and present an empirical model of insurgent activity designed to identify a set

of key parameters regarding the latent organization of insurgent groups. First, we

discuss how to decompose the covariance matrix of insurgent attacks into a form use-

ful for estimation and the rationale for doing so. Next, we describe two estimation

approaches: the first assumes that exactly one insurgent group is present in each dis-

trict, while the second relaxes this assumption. We conclude by demonstrating how

we can avoid potential bias from long-term trends in attacks across districts. Avoiding

bias from weather, seasonal fluctuations, and slow moving time trends is important

when applying our methods to actual data, but we discuss these details last in order

to simplify the exposition.

2.1 Insurgent Attacks

Let districts be indexed by i, and let there be a total of N districts in which attacks

occur. Violent occurrences in i can be of two types: unorganized or organized by an

insurgent group. We make a distinction between attacks initiated by unorganized

local militants and those initiated by members of an organized group, because we

wish to allow for the possibility that there are no organized insurgent groups present

in a district even though attacks may be observed there.

Let ℓi ≥ 0 be the number of unorganized local militants in district i. Let organized

insurgent groups be indexed by j, and let J ≥ 0 be the total number of such organized

groups active anywhere in the country. Let αij ≥ 0 be the number of members in

district i belonging to organized group j. Time is discrete and indexed by t. In our
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analysis below, the time periods used will be days. This high-frequency attack data

is useful because it reduces the number of attacks that are simultaneous simply by

random chance, a feature whose importance will be clear in what follows.

In each time period, the probability that an unorganized local militant launches an

attack is η, which does not change across time (this assumption is relaxed in Section

2.5). The decision by unorganized militants to attack is independent of the decision of

anyone else (unorganized militant or group member). The expected number of attacks

by local militants in district i at time t is thus ηℓi, and the variance within district i is

η(1− η)ℓi. The covariance in these attacks between two districts i and i′ is zero: the

attack decisions are made independently, and the probability of an attack is constant.

In contrast to unorganized militants, members of an organized group are more

likely to attack on some particular days than on others. Let ϵjt be the probability

that a member of group j will attack at time t. This probability is the same for all

members of group j, and whether any given member attacks is independent of other

attack decisions after conditioning on the attack probability ϵjt. As ϵjt does not vary

across districts at t, this process will induce coordination in group j attack behavior.

Across time, the covariance of attacks between two members of the same group is

Var(ϵjt). We assume that this variance is constant across groups, and will refer to it

as σ2.10 Assume that for any other group j′, ϵjt is uncorrelated with ϵj′t. Thus, the

covariance of attacks between two members of different groups is zero. This is also to

say that, if two groups j and j′ can coordinate in their attacks and do so systematically

at daily frequency, we will consider them de facto the same organized group.11 If the

extent of such coordination decreases over time or disappears entirely (because groups

split), our approach will be able to pick this up, provided sufficient microlevel data is

available.

Consider the members of group j. Define xit as the total number of attacks at time

t in district i. If there are αij members in district i and αi′j members in district i′, then

the covariance in attacks over time between these two districts, due to the presence of

10This is with limited loss, as district specific heteroskedasticity will not be separately identifiable
from variation in group-specific parameters αij .

11Besides the organizational complexity of matching day after day the attack behavior of another
group, there is also a potential loss of signalling value of the group identity, as noncombatants will be
uncertain about whether it is j or j′ launching the attacks. In one of the few quantitative studies of
terrorist alliances Horowitz and Potter [2014] emphasize how the main gains from alliances stem from
shared capabilities and technology for attack (for improvised explosive devices or suicide attacks),
and they do not mention the possibility of using dog-whistles to engage in simultaneous attacks. We
do not exclude that this may happen occasionally, only that it does not happen constantly.
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members of group j, is σ2αijαi′j. Summing over members of all groups, the covariance

in attacks between districts i and i′ will be Cov(xit, xi′t) = σ2
∑

j αijαi′j ≥ 0.

The setup just presented is clearly a stylized representation of the attack behav-

ior of insurgent groups, and the covariance structure imposed is not without loss of

generality. A particularly strong assumption made in the model is that the members

of an insurgent group do not move between districts: a given group j has a certain

membership αij in district i, and those members will either be encouraged to attack

in a given period (a high ϵjt), or not (low ϵjt).

A very different model would be one in which members of an insurgent group

are mobile, and in any given period have the choice of attacking in one of many

districts. This latter model implies that organized groups should lead to negative

covariances between districts, as insurgent group members who attack in district i

could not also be attacking in district i′ in the same period. In contrast, the model

presented above suggests that Cov(xit, xi′t) should be positive if at least one insurgent

group j has members in both i and i′, as attacks in both i and i′ will be higher

in periods when ϵjt is high and lower in periods when ϵjt is low; and zero otherwise.

Consistently with these assumptions, in the data the observed covariances Cov(xit, xi′t)

are systematically non-negative.12 The qualitative research of Deloughery [2013] and

others also suggests that a model without substantial substitution in attacks across

districts appears most appropriate.

We now present our estimation methods for parameters describing the number of

insurgent groups and their presence across locations. We first present a decompo-

sition of the covariances just discussed. We then assume that insurgent groups are

non-overlapping, and use this decomposition as part of an algorithm that involves

hierarchical splits of our set of districts. We then consider the case where groups are

potentially overlapping, and show how our covariance decomposition can be used as

the starting point for a non-negative matrix factorization algorithm. The approach

based on clustering and that based on matrix factorization are largely complementary

in that they rely on different assumptions. This provides a form of cross-validation

for our results, which is important given the novelty of these methodologies within

the field of political economy.13

12Permutation tests of the sort discussed later indicate that the mean covariance is positive at any
reasonable confidence level. Results available upon request.

13In the working paper version of this paper we used an approach based on spectral clustering (see
Luxburg [2007]). We discuss this approach, and reasons why our current approach may be preferable,
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2.2 Covariance Decomposition

Let Γ be the covariance matrix for the attacks discussed in Section 2.1, where the

entry in row i and column i′ gives the covariance in attacks across time for these two

districts. Our analysis will be based on this matrix, and others created from it. The

covariance matrix Γ can be decomposed as Γ = ΓD + ΓL, where ΓD is a diagonal

matrix and ΓL is a low rank matrix of the form

(1) ΓL = σ2


∑

j α1jα1j

∑
j α1jα2j ...∑

j α2jα1j

∑
j α2jα2j

...
∑

j αijαij

...

 .

This decomposition is considered because the diagonal entries of the covariance

matrix are a sum of variance from unorganized militants and variance from organized

groups, and only the latter is of interest.14

As a normalization, we set σ2 = 1.15 We do not observe ΓL but we can proceed

by using an estimate Γ̂L: details regarding this estimate are provided in Appendix C.

Because of this decomposition, we effectively do not use pure random uncoordinated

violence as part of our procedure for the detection of groups: random violence acts

only as noise and is not used as part of the estimator. Thus, areas where some group

adherents may be present, but that group has no organizational capacity will not be

detected by our method.16

2.3 Non-overlapping Insurgent Groups

We desire both an estimate Ĵ , the total number of organized insurgent groups, as

well as an estimate α̂ij for each district i and group j, giving the number of insurgent

members of the group operating in that district. The set of estimates {α̂ij} will have a

in Appendix D.
14The diagonal entries of Γ do not in general have a useful form. The situation even with mixture

Poisson distributions does not appear to be simple: see Ashford and Hunt [1973] for the Poisson-
Gamma distribution, and Karlis and Xekalaki [2005] for mixture Poisson distributions in general.

15See Appendix E for a discussion of potential issues if σ2
j is in fact different for different districts

or groups.
16For example, ISIS may have successfully radicalized some individuals in North America and

convinced them to conduct attacks, but these were all lone wolf style attacks, because ISIS does not
have the infrastructure to safely coordinate attacks in North America.
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total of N × Ĵ elements. It turns out to be easiest to first produce the {α̂ij} estimates

for various values of J ∈ {1, ..., Jmax}, and then choose a Ĵ based on examining this

set of estimates.17 We will thus begin by assuming that J is known, and consider how

to compute estimates {α̂ij} given J . After this, we will then consider how to choose

Ĵ .

Estimation via standard clustering techniques requires an additional assumption

different from those that will be needed for Section 2.4. Specifically, it is necessary to

assume that the various insurgent groups present do not have overlapping territories.

That is, there is one organized group j present in any given district i.18 Based on

this assumption, reordering the districts i allows ΓL to be written as a block-diagonal

matrix:

(2) ΓL =

 Γ1
L ... 0

... Γj
L ...

0 ... ΓJ
L

 .

Here there are a total of J organized groups, and each block Γj
L has the form given

in Equation 1. To produce estimates {α̂ij} we will first determine which organized

group is present in each district, and then we determine the strength of this group in

the district.

To determine which organized group is present in each district, we will follow a

modified k-means type approach. Begin by constructing a scaled version of ΓL:

(3) Γcor
L = D(

∑
j

α·jα·j)
−1/2ΓLD(

∑
j

α·jα·j)
−1/2,

where D(.) indicates a diagonal matrix with the specified vector on the diagonal. This

process is occasionally referred to as “sphering” and it often improves the quality of

the clustering. By assumption, for each district i, αij = 0 for all but one group j, and

thus Γcor
L is constructed by dividing row i and column i of ΓL by the value of αij for

the single group j that is present in i.

The “cor” superscript is used because Γcor
L is positive semi-definite with all diagonal

entries equal to one, and thus has the form of a correlation matrix. However, observe

17The exact choice of Jmax is not important.
18This is a direct consequence of the standard assumption that factors should be orthogonal,

combined with the fact that insurgent prevalence α must be non-negative.
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that each off-diagonal entry γii′ has now been divided by αijαi′j if the same insurgent

group is present in districts i and i′. Thus, in exactly the same way as (2), after

suitable rearrangement Γcor
L is a block diagonal matrix with entries consisting only of

zeros and ones:

(4) Γcor
L =

 1N1 ... 0

... 1Nj
...

0 ... 1NJ

 ,

where 1Nj
is an Nj by Nj matrix consisting entirely of ones and corresponds to the

Nj districts that have group j present in them.

Running a k-means type clustering algorithm on Γcor
L would be trivial, but only

the finite sample version is available. Let Γ̂cor
L be the correlation matrix associated

with the finite sample covariance matrix Γ̂L. This Γ̂cor
L will have off-diagonal entries

that are neither zero nor one. However, given J any reasonable clustering algorithm

should be able to recover which insurgent group is present in which district, provided

enough data is available. Once districts have been clustered into groups, estimates for

{αij} can be obtained. Appendix F provides further details for these steps.

We now consider how to produce an estimate Ĵ of the number of insurgent groups

present. A major difficulty we face in determining the number of groups is that it

is not obvious how to construct a null distribution for potential test statistics. For

example, suppose that we wished to test for J > 2 versus the null hypothesis that

J = 2. The distribution of plausible test statistics under the null would in general

depend on whether one of these two groups is very large compared to the other, or

whether they are of roughly equal size.

The only case where this difficulty is avoided is in the test of J > 1 versus the

null hypothesis that J = 1, because under the null there are no nuisance parameters,

as there is only one group present and thus every district must be assigned to that

group. In this special case where the null hypothesis is J = 1, we will show that

a permutation test can be constructed due to the simplicity of the group structure

under the null. Our approach will thus be based on the repeated splitting of groups,

as the only test we have available is one that asks whether a group should be split in

two. The technique we use turns out to match that of Bruzzese and Vistocco [2015],

except that in their case they assume that their data has a hierarchical form, whereas

in our case we are dealing with a block diagonal correlation matrix that does not have
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any hierarchy.

We begin by looking at the set of all districts N . Run a standard clustering

procedure using distances based on Γcor
L to split these districts into two clusters, N1

and N2. Let Q(N1,N2) be some test statistic that takes a high value when the division

of N into N1 and N2 looks like a “good” division. To determine whether we actually

want to split the N districts into the two groups N1 and N2, we will use a permutation

test to calculate a cutoff value for Q.

If we do not split N into two groups, we are done and our estimate of the number

of groups is J = 1. If we do split N into two groups, we apply our method recursively.

That is, let our new set of districts be D = N1, compute a clustering of these districts

into clusters D1 and D2 using the relevant portion of Γcor
L , and then test whether we

should actually split D into D1 and D2. If we do split, we continue the recursion

downwards. If not, we move to considering D = N2. At the end of this procedure, we

will have a partition of N into groups, where each of these groups should not be split

further according to a permutation test.

The standard choice of permutation test would be to follow Bruzzese and Vistocco

[2015], and consider permutations of attacks that generate different Γcor matrices. The

test statistic Q would be based on how much of the covariance matrix can be explained

by splitting the districts being considered into two groups, rather than leaving them as

a single group. This standard approach runs into problems with the calculation of the

null distribution ofQ, because a reference distribution for Γ̂cor
L needs to be calculated.19

This calculation appears to be extremely complicated, because the answer depends on

the finite sample behavior of Γ̂cor
L , which is not well understood. We avoid this problem

by modifying the Bruzzese and Vistocco [2015] approach, and use a Q defined with

respect to a set of auxiliary covariates Z, rather than Γcor.20

To see why this simplifies the problem, note that in the model the only source

of correlation in insurgent attacks across districts is through ϵ. In particular, our

model assumes that if the same insurgent group is present in both districts i and

i′, the correlation in attacks between districts will not depend on the relationship

between any other covariates of i and i′. For example, it does not matter whether i is

geographically adjacent to i′, or geographically distant.

19Specifically, we would need to know how much adding a second group should improve model fit,
if there is only actually one group in the data.

20The standard approach is presented in Appendix Table I.1. The results are the same as in the
main text.
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We will now add one additional assumption. Suppose that the districts where a

given insurgent group is present are less dispersed in terms of these auxiliary covariates

Z than a set of randomly chosen districts. For simplicity, we will focus specifically on

geography, with Zi being a vector indicating which other districts are geographically

adjacent to i, but our approach is potentially more general.

Let Zii′ = 1 if districts i and i′ are geographically adjacent. Let Q(D1,D2) describe

the geographic dispersion of the insurgent group territories when the set D of districts

are being split into two groups, according to the following formula:

(5) Q(D1,D2) =
∑
i∈D1

∑
i′∈D1

Zii′ +
∑
i∈D2

∑
i′∈D2

Zii′

That is, the test statistic Q is a simple calculation regarding whether D1 and D2 rep-

resent distinct geographic regions (in which case Q should be high, as there are a great

many adjacencies), or whether the districts in D1 and D2 are randomly interspersed

(in which case Q should be low). We do not worry about normalizing Q with respect

to the total number of adjacencies, because the threshold value of Q will be computed

using exactly the same set of districts D.

The intuition for this test statistic is that, if all the districts in D are really part of

the same group, then a split of these districts into two groups D1 and D2 will be based

on finite sample noise, which is by assumption uncorrelated with geography. Thus,

the additional groups should not be correlated with geography, and thus values of Q

should be quite low, as the group labels are randomly assigned. A threshold value

is easy to generate using Montecarlo permutations of the group structure: randomly

permute the identities of all the districts, thereby forcing group membership to be

unrelated to geographic location.

One does not have to exclusively rely on the Q statistic to estimate the number

of groups J . In fact, this parameter is also recoverable using an entirely different ap-

proach, one based on the spectral properties of ΓL. Notice that each Γj
L in (2) has rank

1, implying the rank of ΓL is J .21 The rank of ΓL can be then consistently estimated

by applying the intuition of Ahn and Horenstein [2013], using the eigenvalues of ΓL.

Ahn and Horenstein’s “eigenratio” approach proceeds as follows. Suppose that we

were interested in estimating the rank of ΓL. Let λ̂k be the k−th largest eigenvalue of

21This is because the vectors α·j and α·j′ describing insurgent group presence are orthogonal for
j ̸= j′.
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Γ̂L. Asymptotically, the first J of these eigenvalues will be positive and bounded away

from zero, while the remaining N − J will go to zero. Ahn and Horenstein consider

the “eigenratio”

(6) ERk = λ̂k/λ̂k+1.

Asymptotically, ERk will converge to some positive value ck for k < J . However, it

will diverge to infinity for k = J , as the denominator becomes increasingly close to

zero while the numerator remains bounded away from zero. A simple estimate for Ĵ

can then be obtained by choosing the Ĵ that gives the highest value for ERĴ .
22

The ER estimator has a finite sample tendency to estimate Ĵ = 1, because the

eigenvalues of random matrices are generally distributed so that the first few eigen-

values are spaced further apart than most of the remaining eigenvalues.23 This effect

has been noted previously by Ferson and Kim [2012], and Guo-Fitoussi and Darne

[2014] perform an extensive simulation-based analysis.24 The attack datasets that we

consider in this paper, however, are noisier than the data generally used by researchers

studying factor models in macro or finance. We are thus particularly interested in the

finite sample properties of the estimator when the signal-to-noise ratio is very low. In

Appendix G, we provide figures illustrating the behavior of the eigenratio estimator as

the signal vanishes. The simulations that we perform are similar to those conducted

in Guo-Fitoussi and Darne [2014], as well as the original Montecarlo exercises of Ahn

and Horenstein [2013]. To the best of our knowledge, however, the figures that we pro-

duce have not previously appeared in the literature. This includes Appendix Figure

G.3d, showing the distribution of the eigenratio estimator under the null hypothesis

that there is no group structure.

2.4 Potentially Overlapping Insurgent Groups

We now relax the assumption that insurgent groups do not overlap. As in the

approach discussed above, we will begin by assuming that J is known, and estimate

22Ahn and Horenstein [2013] require that there be some exogenous maximum number of possible
factors, Jmax. We follow this, and use Jmax = 80 for this paper. Simulations are provided in
Appendix G.

23Classic references here include the Wigner [1955] semi-circular distribution and the Marchenko-
Pastur [1967] distribution.

24As Mirza and Storjohann [2014] point out, the effect is visible in the original Ahn and Horenstein
[2013] simulations.
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{αij}. We then produce an estimate Ĵ based on a comparison of these estimates for

different values of J . The estimates for {αij} will be based on non-negative matrix

factorization, and the Ĵ estimate will be based on a modification of the ERk discussed

above.

We first construct an estimator for the {αij}, given an assumed number of groups

J . Consider choosing α̂ij for each district i and group j to satisfy the set of restrictions

γ̂ii′ =
∑
j

α̂ijα̂i′j.

where γ̂ii′ is the relevant entry in Γ̂L, estimated in (10) in Appendix C. If there are

N districts, there are N(N + 1)/2 restrictions: one for each off-diagonal element in

one half of the symmetric covariance matrix, plus the diagonal elements. If there are

J groups, there are N × J parameters to be estimated: one α̂ij for each district i and

group j. A necessary condition for identification is thus that (N + 1)/2 ≥ J .

In the data the number of districts is large relative to plausible numbers of groups,

and thus this inequality holds strictly and a penalty function is required. An obvious

estimator for {αij} would then be the squared Frobenius norm

(7) argmin
α̂ij≥0

∑
i

∑
i′

(
γ̂ii′ −

∑
j

α̂ijα̂i′j

)2

.

Unfortunately, solving this optimization problem directly by searching the space of

{αij} is challenging because the problem as stated is non-convex in {αij}. A variety of

algorithms have been proposed for solving this problem. We will use the “Procrustes

rotation” algorithm of Huang, Sidiropoulos, and Swami [2014]. This algorithm does

not attempt to minimize (7), but instead solves a related optimization problem based

on a spectral decomposition of Γ̂L. Huang and Sidiropoulos [2014] show that this

algorithm is effective at solving (7), despite the fact that this objective is not used as

part of the algorithm.25

We now consider how to produce an estimate Ĵ . In Section 2.3, the rank of ΓL

was J , because the vectors α·j and α·j′ describing insurgent group presence would be

25See Appendix H for more details. A previous version of this paper optimized (7) directly, using
the algorithm of Birgin, Martinez, and Raydan [2000]. The (qualitatively identical) results from
this direct approach are available upon request. Huang, Sidiropoulos, and Swami [2014] is orders of
magnitude faster, converging in seconds or minutes rather than hours or days.
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orthogonal for j ̸= j′. This is no longer true if groups have the potential to overlap.

Instead of the rank of ΓL, we thus base our estimate Ĵ on the completely positive rank

of ΓL: that is, the rank of A, where ΓL = AAT, and all entries of A are non-negative.

Without further assumptions this decomposition is not identified. For example,

(8) ΓL =

[
1 1

1 1

]

could be decomposed either into A =

[
1

1

]
or Ã = 1√

2

[
1 1

1 1

]
. Huang and

Sidiropoulos [2014] summarize assumptions under which the non-negative factoriza-

tion of ΓL becomes unique for practical purposes:26 each factor must have at least

J − 1 non-zero entries, and the non-zero entries of one factor must not be a subset of

the non-zero entries of any other factor. In the example above, the second assump-

tion is violated by matrix Ã. We will assume that the Huang and Sidiropoulos [2014]

assumptions are satisfied. Thus, faced with the covariance matrix in (8), we would

conclude that Ĵ = 1 based on the factorization employing matrix A.

If ΓL were known, the number of organized groups could thus be calculated im-

mediately by producing a non-negative factorization of ΓL. However, only the finite

sample Γ̂L is actually available, and in general this matrix will not have a non-negative

factorization due to finite sample variation.

To address this problem, we will use a modification of the eigenratio approach.

The intuition behind the Ahn and Horenstein [2013] approach appears very general.

Consider a rank k approximation to an N×N matrix. The first k eigenvectors can be

used to create such an approximation. How much better is a rank k+1 approximation?

If the k+1th eigenvalue is very small relative to the kth eigenvalue, then considering

a rank k + 1 matrix instead of a rank k matrix does not improve the approximation

very much, and ERk will thus be very high. We can apply this intuition to the case

of the group structure of Γ̂L. Let Ak be an approximate non-negative factorization

of Γ̂L with k factors. How much better would Ak+1 be as an approximation to Γ̂L?

Asymptotically, if ΓL was produced by k groups, the improvement will be zero.

26Conditions theoretically guaranteeing the uniqueness of the factorization are more complicated:
see the references in Huang and Sidiropoulos [2014].
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A ratio equivalent to Ahn and Horenstein’s “eigenratio” can then be expressed as

(9) NNRk =
||Γ̂L − AkA

T
k ||2F − ||Γ̂L − Ak−1A

T
k−1||2F

||Γ̂L − Ak+1AT
k+1||2F − ||Γ̂L − AkAT

k ||2F

where ||.||F is the Frobenius norm. The intuition for NNRk is exactly that of the ERk:

if ΓL has a completely positive rank of k, then the k + 1th factor should not help

explain ΓL, and thus NNRk should diverge to infinity. In contrast, values of NNRk for

k < J will converge to finite values.

The finite sample behavior of the eigenratio estimator is shared by estimators using

NNR. It will thus be important to check whether the values of NNR obtained might

have arisen by random chance from data with no actual group structure. Consider the

value of maxk<Jmax NNRk. We wish to compare this test statistic to its distribution

under the assumption that there is no actual group structure, obtaining appropriate

p-values.27

To do so, we consider a “reference distribution” where there are no organized

groups. We randomly generate attack data based on this distribution, calculate an

equivalent to Γ̂L based on this randomly generated data, calculate a value for NNRk

based on this matrix, and then repeat this process 100 times. We consider three

different reference distributions: details are provided in Appendix I.

2.5 Robustness: Potentially changing district environments

Both the non-overlapping and overlapping approaches just described assume that

the covariance in attacks by group members across districts remains the same even

across long periods of time. In the observed data, however, it may be the case that

in earlier years certain districts are the focus of many attacks, while in later years

activity shifts to other districts. These sorts of long-term changes can be accounted

for by considering only the covariance in attacks across districts within shorter time

windows.

Let Γm be calculated the same as Γ from Equation (1), but using only daily attack

data from month m. As the number of days of data used to calculate estimates of

Γm does not increase asymptotically for any given month m, estimation based on a

27Other hypothesis tests are difficult to perform: the distribution of eigenvalues resulting from
random variation in finite samples is not obvious. We thus do not report confidence intervals for Ĵ .
For similar reasons, we also do not report confidence intervals for {α̂ij} below.
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Figure 1: Afghanistan data

(a) Total attacks per capita (b) Ethnic Groups

single Γm would be inconsistent. Aggregating across months, however, results in a

consistent estimator that is robust to changes in attack probabilities between districts

at monthly frequency.

Specifically, assume that the probability of an attack in district i in monthm, either

from unorganized militants or an organized group, now changes with a parameter ζim.

That is, the probability of an attack from a unorganized militant is now ζimη, and the

probability of an attack from member of organized group j is now ζimϵjt. Let D(·)
again indicate a diagonal matrix with the given entries on the diagonal. If ζ were

known, the standardized matrix Γ̃m = D( 1
ζm
)ΓmD( 1

ζm
) could be summed to create

Γ̃ = D(
∑

m ζm)Γ̃mD(
∑

m ζm). Γ̃ could then be used to estimate {αij}. In reality, ζ

is unobserved; however, dividing by the observed number of attacks creates a feasible

estimator, with {αij} identified up to scale.

This approach can be employed with both estimation based on clustering and that

based on non-negative matrix factorization. Appendix J provides further details.

3 Data

Incident-level information is the main input to our empirical analysis. Both Afghanistan

and Pakistan were covered by the Worldwide Incidents Tracking System, a discontin-

ued U.S. government database [Wigle 2010].28 Data is available for the location, date,

28The data remains accessible online courtesy of the Empirical Studies Of Conflict (ESOC) project
at Princeton University.
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and type of violent incidents from January 2004 to September 2009.29

In some cases the identity of the group responsible for the attack is also reported.

While we do not use this identity information as an input to our analysis, we will be

interested in comparing the identity information with the output of our analysis in

order to see what value our methods can add.

The violent incidents catalogued in the WITS data are episodes of violence initi-

ated by insurgents, or acts of random violence. The data does not include violence

directly connected to military counterinsurgency operations, such as for instance a

U.S. military attack on a Taliban safe house or the bombing of a fortified compound.

Appendix K provides details.

The location reported for an attack in WITS is given as latitude and longitude

coordinates. This would seem to suggest that attacks could be analyzed as some sort

of spatial point process. Closer inspection, however, reveals that the latitude and

longitude coordinates reported are not those of the actual location of the attack, but

rather the coordinates of a prominent nearby geographic feature. Sometimes this is a

city or village, but for the vast majority of incidents the location given is that of the

centroid of the district in which the incident occurred.

In Afghanistan, the district is the lowest-level political unit, and we will use it

as our geographic unit of analysis. A few districts have been split in recent years:

this paper uses 2005 administrative boundaries, which specify 398 districts. The

WITS data effectively provides panel data at the district-day level, with N = 398 and

T = 2082. District-level geographic locations are also used for the Pakistan WITS

data.

According to the data, there are some days where as many as 64 different districts

in Afghanistan are affected by simultaneous insurgent attacks. However, there are

also 123 districts with no reported incidents over the entire 2004-2009 time period.

The identity of the insurgent group launching the attack is provided 55% of the time.

Overwhelmingly (98% of the time) these attacks are reported as being launched by

29The following two examples illustrate the typical form of incident descriptions:
“On 27 March 2005, in Laghman, Afghanistan, assailants fired rockets at the Governor House,

killing four Afghan soldiers and causing minor damage. The Taliban claimed responsibility for the
attack.”
“On 19 February 2006, in Nangarhar, Afghanistan, a suicide bomber detonated an improvised

explosive device (IED) prematurely near a road used by government and military personnel, causing
no injuries or damage. No group claimed responsibility.”
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Figure 2: Pakistan data

(a) Total attacks per capita (b) Ethnic Groups

“Taliban”.30 We do not use this group identity data as part of our analysis. Instead,

in Section 4 we conclude based solely on the pattern of simultaneous attacks that there

is only a single group active in Afghanistan during this period, and we thus concur

with the coding given in WITS: in Section 5 we consider later data and show that we

disagree with a similar coding there.

For Pakistan, the BFRS dataset [Mesquita et al. 2015] is also available. This

is similar to WITS, in that it provides daily data on violent incidents, including

geographic information. BFRS data is available until 2011, and over the WITS time

frame of 2004-2009, BFRS contains approximately twice as many incidents as WITS.

Because of the greater number of attacks recorded, we prefer the BFRS data to the

WITS data.

We only make use of BFRS data from mid-2008 until the end of the sample in

2011, because qualitative evidence suggests that the structure of insurgent groups

during this 3.5 year period was relatively stable. In early 2008 national elections took

place in Pakistan, producing a new executive after the resignation of General Pervez

Musharraf: we use this important political break as the starting point for our analysis.

The Taliban also strengthened considerably around 2008 [Iqbal and De Silva 2013],

and there is qualitative evidence of an active organization in Sindh (the Sindhudesh

Liberation Army) and in Balochistan (the Baloch Republican Army).

30The WITS attributes 54% of attacks to the Taliban, 0.6% to Hizb-i Islami, 0.3% to al Qa’ida, and
45% to unknown, and the GTD attributes 59% of attacks to the Taliban, 0.5% to Hizb-i Islami, 0.1%
to al Qa’ida, 0.8% to the Haqqani network, and 39% to unknown (the rest is split among another
seven groups).
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Figure 3: Afghanistan groups via spherical k-means

(a) 2 Groups (b) 3 Groups

For geographic data on ethnicities, we use the Soviet Atlas Narodov Mira data.31 In

Figure 1 we show the pattern of attacks by district in Afghanistan and the distribution

of ethnicities. The concentration of attacks in the ethnic Pashtun areas is evident. In

Figure 2 we report the same information for Pakistan. This data forms the basis for

most of the analysis that will be performed immediately below in Section 4.

In Section 5 we use more recent data to show how our approach provides informa-

tion on group structure beyond what is already available in input datasets. For this

exercise we use the Global Terrorism Database, which has an ongoing data collection

effort. As of the writing of this paper, data is available through to the end of 2016.

The GTD provides data on the location and date of attacks at the same resolution

as WITS and the BFRS. Unfortunately, the GTD includes only a fraction as many

attacks: for Afghanistan, WITS reports 7846 attacks whereas the GTD only reports

1692 attacks over the same period. A major advantage of the GTD data, however, is

that it provides a coding of “related” attacks based on expert opinion, which effec-

tively identifies exactly the simultaneous attacks that we are interested in analyzing

with our method. Thus, although the GTD dataset we use in Section 5 is smaller, it

includes much less noise: we can focus on only simultaneous attacks that were judged

by analysts to truly be organized related attacks, thereby omitting most of the cases

where individual attacks simply happened to occur on the same day through random

chance.

31The version used is the “Geo-referencing of ethnic groups” data set of Weidmann et al. [2010].
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Figure 4: Eigenratios, Afghanistan
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4 Results

We first analyze attack data from Afghanistan, and then consider the case of Pak-

istan. In both cases, we begin with the spherical k-means clustering and splitting

approach outlined in Section 2.3, and then proceed to the non-negative matrix factor-

ization approach of Section 2.4. For all these analyses, we will use attack covariance

matrices calculated using only within-month variation, as described in Section 2.5,

unless noted otherwise. This is because it is important to avoid contamination by

long-term trends, as well as seasonal variation in conflict.

4.1 Afghanistan

To illustrate attack data from Afghanistan, Figure 3 shows clustering based on

spherical k-means, as outlined in Section 2.3. Qualitatively, the clusters shown in

the figure appear indistinguishable from random noise.32 We now test this hypothesis

formally using the statistic proposed in (5).

Column I of Table 1 shows the results of this analysis. We begin by considering

the null hypothesis that all districts are associated with the same insurgent group,

32These figures are calculated based on a “within month” covariance matrix, as described in Section
2.5. Results do not change with other approaches.
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Table 1: Estimation of Ĵ based on hierarchical splits

Afghanistan Pakistan
I II

Split at (1)? Randomly shuffled data (mean) 284.99 137.67
Std. dev. 11.09 8.52
Actual data 289.00 159.00
p-value 0.38 0.01

Split at (2)? Randomly shuffled data (mean) 44.42
Std. dev. 4.30
Actual data 64.00
p-value 0.00

Split at (3)? Randomly shuffled data (mean) 34.30
Std. dev. 4.61
Actual data 47.00
p-value 0.01

Split at (4)? Randomly shuffled data (mean) 18.22
Std. dev. 3.01
Actual data 16.00
p-value 0.71

Split at (5)? Randomly shuffled data (mean) 14.01
Std. dev. 2.90
Actual data 19.00
p-value 0.08

Split at (6)? Randomly shuffled data (mean) 12.63
Std. dev. 2.32
Actual data 15.00
p-value 0.23

Split at (7)? Randomly shuffled data (mean) 9.21
Std. dev. 1.87
Actual data 10.00
p-value 0.44

Each column computes a test statistic Q as described in Section 2.3, based on a within-month covariance matrix as described in Section

2.5. Figure 5 shows the order of the potential splits. Columns differ in the underlying attack data used:

Column I uses the full Afghanistan WITS dataset.

Column II uses the Pakistan BFRS dataset for May 2008 - October 2011.
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Figure 5: Hierarchical Splits

�
�� �
�

�� �
�

�� �
�

�� �
�

�� �
�

�	 �
�

�
 �
�

and ask whether we should instead split the districts into two groups. In Figure 5,

this first potential split is indicated by (1). We calculate how geographically distinct

these split groups would be, and also calculate how geographically distinct we would

expect them to be under the null hypothesis that there is actually only one group.

These calculations are shown in Table 1 on the rows following “Split at (1)?” The

results displayed in column I of Table 1 show that for Afghanistan the actual data

leads to groups that are no more geographically distinct than would be expected by

random chance. Thus, for the Afghanistan data we stop at one group. The eigenratio

approach of Ahn and Horenstein [2013] produces an identical result, as illustrated in

Figure 4, where one large eigenratio at 1 is strikingly evident. Thus, both approaches

suggest that the Taliban do not appear divided into multiple organized groups.

The group membership shown in Figure 3 involves a discrete partition of districts

into insurgent groups. Some districts, however, might have more than one active

insurgent group. The model presented in Section 2.4 allows for this possibility. An

additional advantage of this model is that it provides a test against the null hypothesis

that J = 0, and all attacks are the result of disorganized local actors. In contrast, the

model used in Section 2.3 assumes that there is exactly one organized group present

in each district, and thus this model cannot be used to test the hypothesis that there

are actually no groups.

The non-negative matrix factorization approach of Section 2.4 gives very similar

results to those just discussed. In contrast to the previous approach, multiple insurgent

groups may now be active in any single district, and thus it is no longer easy to display

the estimated insurgent group structure on a single map. Instead, we produce one

map for each group. Figure 6 provides a visualization of the factorization in the case

where J = 2. Again, there is no discernible pattern to the estimated insurgent groups.
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Figure 6: Afghanistan, 2 groups via NNMF

(a) Group 1 (b) Group 2

Table 2: Estimated number of groups via NNR, Afghanistan

Not by Month By Month
I II III IV V

Afghanistan (WITS, Jan 2004 - Sept 2009, weighted) 4 4 1 1 1
(p value, vs. no group structure) 0.57 0.41 0.01 0.01 0.03

Afghanistan (WITS, Jan 2004 - Sept 2009, unweighted) 1 1 1 1 1
0.02 0.02 0.02 0.03 0.06

Each row presents two estimates of Ĵ, the number of groups present. Columns I and II show the first estimate, described in Section 2.4.

Columns III through V show the second estimate, based on the within-month covariance matrix as described in Section 2.5.

In each column, the p values presented are a test of the null hypothesis that there is no group structure. Other tests (e.g. J = 1 vs.

J = 2) appear difficult to construct.

Columns I and III compute p values by comparing to a reference distribution where the time of the attacks within each district has been

permuted. See Appendix I for a description of this and other reference distributions.

Column IV is the same as Column III, but the time of attacks is permuted only within each month.

Columns II and V consider only permutations that keep constant the total number of attacks in each district and on each day.
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We are particularly interested in whether we can reject the null hypothesis that

J = 0, i.e. that there are no organized insurgent groups present at all. We begin

by calculating the ratio described in Equation (9), and choose Ĵ so as to maximize

this ratio. We then consider the distribution that this ratio would have if there were

actually no organized groups. To do this, we use the permutation approach described

in Section 2.4 and Appendix I.

Table 2 shows the results of this analysis for the Afghanistan data. There are

four estimates of J provided. Beginning with the first two columns of the first row,

Ĵ = 4 in the case where districts are weighted proportionally to the number of attacks

in the district. Continuing to the next three columns of the first row, Ĵ = 1 if, in

addition to this weighting, the covariance matrix is calculated considering only within-

month variation in attacks using the approach described in Section 2.5. The second

row provides estimates without weighting districts, and results in Ĵ = 1 regardless of

whether the approach in Section 2.5 is used or not.

Below each Ĵ estimate a p value is shown, corresponding to a test of the null

hypothesis that in fact there is no group structure, with J = 0. We see that in general

the null is rejected at the 95% level. The exception is the case where our estimate was

Ĵ = 4. With this specification, the model appears to have low power. This analysis

supports the results obtained in Table 1, in that there appears to be one organized

group of insurgents, rather than more than one. Furthermore, the observed NNR1

values, calculated according to Equation 9, appear to be more extreme than would be

the case if there were no organized groups at all. Table 2 shows that the observed data

appears to be inconsistent with J = 0, a conclusion that we were not able to draw

from the results shown in Table 1. Overall, in the Afghan case all our methodologies

point to a single, organized Taliban insurgent group during the 2004-2009 period.

4.2 Pakistan

Clusterings based on the Pakistan attack data are shown in Figure 7. Unlike the

results for Afghanistan shown in Figure 3, our clusterings for Pakistan, computed on

the basis of the attack covariance matrix, result in groups that appear to be clustered

geographically. For a more formal analysis, we consider the Q statistic results in

column II of Table 1.

Unlike the case with Afghanistan in Column I, we do not stop immediately with

an estimate of Ĵ = 1. Instead, for Pakistan, the first set of rows in Table 1 shows
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Figure 7: Pakistan groups via spherical k-means

(a) 2 Groups (b) 3 Groups

(c) 4 Groups (d) 5 Groups

that if the set of all districts is split into two groups, these groups are substantially

more geographically distinct than would be expected if there were no actual group

structure. We thus split the set of districts into these two groups, and continue

recursively, asking for each of these two groups whether the group should be further

divided. These questions are indicated by (2) and (3) in Figure 5, and the next two

sets of rows in Table 1. In each of these cases the potential splits appear to be more

geographically distinct than would be expected by random chance, and so in each

case the group is split, leading to a total of four groups. Continuing recursively, we

consider whether any of the four groups we now have should be further split. These

questions correspond to the final four sets of rows in Table 1. We see that none

of these splits generate groups that are more geographically distinct than would be

expected by random chance, and thus we do not split any of these groups. At this
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Figure 8: Pakistan, 4 groups via NNMF (left column) and ethnicities (right column)

(a) Group 1 (b) Balochis

(c) Group 2 (d) Sindhis

(e) Group 3 (f) Afghans

(g) Group 4 (h) Panjabis, Jhats, Awans
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Table 3: Ethnic composition of groups shown in Figure 7c

Group 1 Group 2 Group 3 Group 4
Baloch 0.62 0.25 0.00 0.12

(0.09) (0.09) (0.10) (0.10)
Sindhs 0.04 0.87 0.04 0.04

(0.07) (0.07) (0.08) (0.09)
Afghans 0.12 0.08 0.58 0.23

(0.07) (0.07) (0.08) (0.08)
Panjabis, Jhats, Awans 0.16 0.12 0.23 0.49

(0.05) (0.05) (0.06) (0.06)
Other 0.00 0.29 0.57 0.14

(0.13) (0.13) (0.15) (0.16)
N 115 115 115 115

Each column corresponds to a single regression without intercept.

The dependent variable is a dummy variable indicating whether a given district was clustered into the specified group number in the

clustering shown in Figure 7c. Districts shown as white in the figure (“no data”) are dropped: the remaining 115 districts are used in

the regression.

The independent variables are a set of dummy variables, indicating whether the specified ethnicity was listed as the first ethnicity at

the centroid of a given district.

Each row should sum to 1 because each coefficient in the table is a conditional mean giving the fraction of districts of the specified

ethnicity that were clustered into the specified group, and the clustering in Figure 7c assigns each district to one group. Rows may not

sum exactly to 1 because of rounding.

Standard errors in parentheses.

point there is no further recursion, with an estimate of Ĵ = 4. The unified insurgent

structure (Ĵ = 1) that we recover for the Afghan case thus appears not to be present

in Pakistan. This accords with qualitative analysis such as Dorronsoro [2009].

For completeness we now analyze the Pakistan data using the non-negative matrix

factorization approach of Section 2.4. As with the Afghan data, results are generally

in line with that obtained using the Q statistic approach. The left-hand column of

Figure 8 shows a non-negative matrix factorization of the attack covariance matrix

for Pakistan, using four factors. The result here is very close to that shown in Figure

7c. Furthermore, both of these figures show what appears to be a close relation-

ship between the estimated group structure and the arrangement of ethnic groups in

Pakistan. The relevant breakdown of these ethnic groups is shown in the right-hand

column of Figure 8.

A qualitative comparison of the left and right columns of Figure 8 shows that
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there is one insurgent group present in Balochistan, another in the area populated by

Sindhs, a third in the area populated by “Afghans” (i.e. Pashtuns), and a fourth in

the Punjabi areas of Pakistan. The northernmost areas of Pakistan, with numerous

smaller ethnicities, appear to be associated most closely with the “Afghans”.33 The

major ethnic divisions of Pakistan can thus be successfully reproduced employing only

the covariance matrix of insurgent attacks.

Tables 3 and 4 show the relationship between estimated insurgent groups and eth-

nic groups in a quantitative fashion. These tables are constructed to describe the

distribution of ethnicities across the estimated insurgent groups. Each row corre-

sponds to an ethnicity and sums to 100% (up to rounding error). The rows have been

ordered so that the diagonal entries correspond to the qualitative relationship between

insurgent groups and ethnicities just discussed. This is the same ordering of rows as

is used in Figure 8.

We now consider an eigenratio type analysis of the Pakistan attack data. In the

case of Afghanistan, analysis based on the Q statistic approach in Table 1 resulted

in an estimate of Ĵ = 1, but it was then necessary to use the results shown in Table

2 to show that the null hypothesis of J = 0 could be rejected. In contrast, with

the Pakistan data, Table 1 gives Ĵ = 4. This result would be extreme under a null

hypothesis of J = 0, and thus it is not as important to seek alternate confirmation

that there is indeed a group structure in the data.34 This turns out to be fortunate,

as the eigenratio type analysis shown in Table 5 is inconclusive in the case of the

Pakistan data.35

33Adding a fifth group does not result in these “other” ethnicities being clustered into their own
separate group: see Figure 7d. This may be because these areas consist of many small ethnic groups,
and there is not a sufficient number of attacks for these smaller groups to be estimated correctly.

34In order for Table 1 to lead to an estimate of Ĵ = 4 it must be that for each of two groups, three
groups, and four groups, the improvement in geographic clustering is at least one standard deviation
better than would be expected if there were no group structure. A result of Ĵ = 4 is thus already
very extreme under the null that J = 0.

35Very few entries are statistically significant at the 95% level, and those that are appear to be
computational artifacts of some sort, giving very high estimates for Ĵ . In Appendix G.1 we compare
an eigenratio analysis to an analysis based on our Q statistic and show that the eigenratio approach
is less likely to return the correct number of groups and sometimes returns very high numbers of
groups. We join a number of other researchers in discarding a Ĵ estimate based on eigenratios in
favour of other evidence: both Henzel and Rengel [2014] and Alquist and Coibion [2014] discard
Ĵ = 1 in favour of two factors, and Bleaney et al. [2012] discards Ĵ = 1 or Ĵ = 3 in favour of four or
more factors, while Rezitis [2015] discards Ĵ = 2 in favour of five factors.
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Table 4: Ethnic composition of groups shown in Figure 8

Group 1 Group 2 Group 3 Group 4
Baloch 0.58 0.07 0.12 0.23

(0.05) (0.04) (0.06) (0.06)
Sindhs 0.14 0.35 0.19 0.32

(0.04) (0.03) (0.05) (0.05)
Afghans 0.15 0.07 0.48 0.30

(0.04) (0.03) (0.04) (0.05)
Panjabis, Jhats, Awans 0.22 0.11 0.23 0.44

(0.03) (0.03) (0.03) (0.04)
Other 0.05 0.11 0.61 0.24

(0.07) (0.06) (0.08) (0.09)
N 115 115 115 115

Each column corresponds to a single regression without intercept, concerning group j ∈ {1, 2, 3, 4}.

The dependent variable is α̂ij/
∑

j′∈{1,2,3,4} α̂ij′ . This is the fraction of organized insurgents present in a district that are from group

j. This data is displayed in the left column of Figure 8, and it is available for the same 115 districts that were analyzed in Table 3.

The independent variables are a set of dummy variables, indicating whether the specified ethnicity was listed as the first ethnicity at

the centroid of a given district.

Each row should sum to 1 (up to rounding) by the same argument as in Table 3: each coefficient in the table is a conditional mean for

the ethnicity in question, every district is coded as one ethnicity, and the group shares must sum to one.

Standard errors in parentheses.

Table 5: Estimated number of groups via NNR, Pakistan

Not by Month By Month
I II III IV V

Pakistan (BFRS, May 2008 - Oct 2011, weighted) 1 1 1 1 1
0.63 0.63 0.16 0.28 0.55

Pakistan (BFRS, May 2008 - Oct 2011, unweighted) 2 2 16 16 16
0.73 0.68 0.00 0.01 0.03

Notes: same as Table 2, except with Pakistan data.
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5 Discussion and Applications to GTD Data

This section provides a set of applications designed to display some of the addi-

tional capabilities of our methodology. We continue to focus on the insurgencies in

Afghanistan and Pakistan; however, the applications we present translate to other

contexts as well, both in the conflict literature and in some cases more broadly in

political economy.

5.1 Tracing Insurgent Coalition Structures Over Time

Often qualitative analysis of conflict traces a static or slow-moving picture of al-

liances and coordination among different factions or insurgent groups. For example,

in the Introduction we discussed how the “perpetrator” coding in the GTD uses a

generic “Taliban” attribution for the majority of attacks over the 2004-2016 period.

Shifts in internal organization and alliances, however, are common and can be frequent

[Christia, 2012]. Our methodology displays promise in tracing such structures over

time.

Consider the Afghan case, where observers have highlighted shifts in the Taliban

organization over time after 2009. For instance, in late 2015 the Washington Post

writes that:

“the Taliban are no longer viewed as a monolithic entity capable of uniting

Afghans under a religious identity. The discovery of Mullah Omar’s death

in 2013, the mythologized Robin Hood of Afghanistan, has ended the Tal-

iban’s identity as Afghanistan’s unifying entity. Fractured movements tend

to prolong conflicts. This is evident with contemporary conflicts around

the globe from Yemen, Syria, and Libya.”36

Several other articles maintain the first assertion and the final two sentences justify

our interest in the question.37

36Shawn Snow 12/21/2015 Washington Post ”Why a fractured Taliban is endangering the U.S.
mission in Afghanistan”.

37Sudarsan Raghavan 2/15/2015 Washington Post ”As the U.S. mission winds down, Afghan in-
surgency grows more complex”. The article reports that “the Taliban is transforming into a patchwork
of forces with often conflicting ideals and motivations, looking less like the ultra-religious movement
it started out as in the mid-1990s. The fragmentation may suggest the movement is weakening, but it
is forcing Afghanistan’s government to confront an insurgency that is becoming increasingly diverse,
scattered — and more lethal.”
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Figure 9: Test for splitting into multiple groups
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(b) Pakistan

Although the methodology presented in Section 2 assumes a constant group struc-

ture, we can apply our method to data with a changing group structure by repeatedly

running an analysis using a moving window of data. Specifically, each dot in Figure

9a shows the p value corresponding to a moving window of 51 simultaneous attacks

from the GTD attack data for Afghanistan, computed the same way as in Column I of

Table 1, with the dots located on the horizontal axis at the date of the 26th attack.38

Low p values indicate rejection of the null hypothesis of the presence of a single, uni-

fied group for our hierarchical split test. A single unitary actor cannot be rejected

in the period before 2012 (consistently with our results using WITS for 2004-2009 in

Section 4), but the situation progressively evolves towards fragmentation after 2012.

The Taliban appear composed of separate factions after 2013-2014, information not

available in the GTD group identity coding. The test traces a continuous progres-

sion, not a drastic structural breakpoint, starting around 2013. By early 2015 we can

systematically reject at the 5% statistical confidence level the hypothesis that the Tal-

iban is a unitary organization - the Taliban still coordinate but they do so in different

38The only GTD components of the attack data used are geolocation and exact date of the event.
The GTD is valuable here because of the longer time coverage, which spans the full 2004-2016 period
(at a loss of higher sparsity of incidents recorded). We do not employ in any part of the analysis here
information on group identity in the “perpetrator group” coding of the GTD.
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clusters. As further supporting evidence, one obtains qualitatively similar evidence

of increased fragmentation of the Taliban when rerunning the exercise of Figure 9a

employing only incidents explicitly labeled as “Taliban” in the GTD. That is, the

pattern of organizational change appears internal, as it is clear even when performing

the analysis within Taliban incidents only, according to the GTD attribution.39

As final validation of this method, Figure 9b shows that an equivalent analysis

using GTD data for Pakistan always yields low p values over time. The multiple

groups discussed in Section 4 using BFRS data are a constant feature of insurgency

in this country and are confirmed in this application as well.40

5.2 Detection of New Insurgent Groups

The methods presented in this paper also allow for the early detection of emerging

insurgent groups based on attack data alone. As proof of concept, consider here the

case of the Sindhudesh Liberation Army (SDLA), a violent independence movement

in the Pakistan province of Sindh.

In Appendix L we document how the GTD reports coordinated, large-scale activity

of the SDLA in the region on February 25th, 2012. This identification was made

only in 2012 notwithstanding explicit claims of responsibility by the SDLA itself in

previous events in 2010 and 2011 (the GTD reports only 6 of them, while the BFRS

shows hundreds of unattributed but coordinated incidents).41 The GTD still attributes

attacks by the SDLA to an “unknown group” in 2011. None of the GTD attacks before

February 2012 are listed as part of multiple incidents.

Estimates based on our methodology show an insurgent group using coordinated

attacks operating in Sindh in April 2011. Figure 10 shows a clustering based on

39The figure appears virtually identical and it is available upon request. This also clarifies that
none of these findings are due to the entry of ISIS in the Afghan arena. There are two additional
arguments, besides the within-Taliban analysis, to doubt that ISIS may be related to these findings.
The first argument is timing. The first recorded ISIS attack in the GTD is in 2015, while the p values
start oscillating well before. The other argument is related to sheer magnitudes. Against a total of
5, 420 generic “Taliban” incidents recorded in GTD over the same period, ISIS is attributed only 132
incidents in total for Afghanistan between January 1st, 2010 and December 31st, 2016.

40The GTD contains relatively few simultaneous attacks for Pakistan, and thus we use a window
of 26 attacks rather than the 51 used for Figure 9a. A narrower window will in general increase
calculated p values, and we have verified that if a 51 attack window were used all p values for
Pakistan would be less than 0.01.

41Claims of responsibility were documented in the public sources used by GTD, but presumably
the GTD coders could not be certain of the veracity of these claims, which were in pamphlets left at
the scene of the bombings.
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Figure 10: Pakistan groups, 10 months before GTD identifies SDLA

BFRS data truncated to end in April 2011, and Appendix Table M.2 shows that our

Q statistic method still indicates the presence of 4 groups. Figure 10 is almost identical

to Figure 7c, which used the full sample ending in October 2011 (even this later date

is still a full quarter before the SDLA is identified in the GTD). A researcher with

access to microlevel data such as the BFRS and employing our methodology in real

time could have been able, almost a year in advance, to detect a significant cluster of

activity in Sindh. Employing only the BFRS incident description section would not

have been a valid substitute for our method: only 9 incidents are coded to the SDLA

in BFRS event descriptions across all the 2008-2011 sample: this, out of almost 1, 300

attacks listed in Sindh between 2010 and the first quarter of 2011 alone. We thus

see that our methodology can detect changes in insurgency structures beyond what is

reported in the best publicly available datasets.

5.3 Validation of Sources: The Case of the Haqqani Network

The WITS dataset provides a “group” coding for about half of all attacks: in

almost all of these, the perpetrator is listed as undifferentiated “Taliban”. Our results

for Afghanistan in Section 4.1 agree with this “group” coding even though we did

not use this coding in our analysis. This confirmation of the WITS coding was not a

foregone conclusion because there is substantial controversy regarding the structure of

the insurgency in Afghanistan. In fact, we have shown in Section 5.1 that we actually

disagree with a largely similar “Taliban” coding when it is used by the GTD in 2010-
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2016. Furthermore, contra WITS, the GTD codes the hard-line Islamist “Haqqani

Network” as a distinct group, and there is thus disagreement even between databases.

Much discussion in the counterinsurgency literature has been dedicated to the

Haqqani Network and whether it is part of the Taliban proper or is instead an in-

dependent entity with links to Pakistan and its security services. Appendix Figure

M.6 reproduces Figure 1 from Jones [2008], a well-reputed study of insurgency in

Afghanistan during the period covered by WITS. Maps similar to Appendix Figure

M.6 are frequently digitized and employed for spatial conflict analysis, much like the

Murdock [1959] ethnic maps are used in studies of ethnicity and conflict [König et al.,

2017].

The Haqqani Network is given a distinct geographic territory in Appendix Figure

M.6, and is coded in the Global Terrorism Database as being responsible for 77 attacks,

including some very large simultaneous attacks. On the other hand, the Haqqani

Network does not appear in the WITS group coding, and the son of the founder made

the following remarks to BBC Pashto on October 3, 2011:

[Siraj Haqqani] pledged loyalty to [Taliban Leader] Mullah Omar, saying

he “is our leader and we totally obey him.” “In every operation we get

the order, planning and financial resources from the [Taliban] Emirate’s

leadership and we act accordingly,” Mr Haqqani said.

Claims of responsibility occur frequently in the media in the aftermath of violent

incidents or in the context of strategic manipulation of the conflict narrative.42 Incen-

tives for truthful communication, as opposed to over-claiming for psychological effect,

42For example, the US government has classified the Haqqani Network separately as a terrorist
organization, and specifically blames it for certain attacks. Consider a simultaneous attack reported
by Reuters on April 16, 2012:

The Taliban claimed sole responsibility for the attacks ... Afghan and U.S. officials
have blamed the attacks on the al Qaeda-linked Haqqani network, based along the porous
Afghan-Pakistan mountain border...

‘The attacks were very successful for us and were a remarkable achievement, dealing a
psychological and political blow to foreigners and the government,’ [Taliban spokesman]
Mujahid said. ‘... the Haqqanis are part of the Taliban ... This is a baseless plot from
the West, who wants to show that we are separate.’

Our results agree with the Taliban position regarding this attack. In general, given a sufficiently
large data set of explicit, but unverified, claims by different group leaders and corresponding attack
data, our methods can provide a quantifiable and non-subjective metric of reliability, furthering the
conflict literature focused on strategic communication.
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are ambiguous for insurgents. To the best of our knowledge, the conflict literature

lacks objective and replicable quantitative approaches designed to assess this type of

messages: our methods help fill this gap.

Based on Table 1 and Figure 3, we prefer the WITS coding that includes Haqqani

with the Taliban to the GTD coding of a separate Haqqani Network. In general,

the contrast between the results of our method and other sources can provide in-

sight regarding the degree to which quantitative evidence actually supports various

qualitative reports, and our methodology can be employed as a tool for an objective

assessment of claims made by insurgents and counterinsurgents.

6 Prevalence of Coordination

In Sections 4 and 5 we employed the presence of simultaneous attacks to study the

organization of insurgency in Afghanistan and Pakistan. A remaining question is how

prevalent these sort of attacks are and whether further insight can be gathered from

their empirical properties.

Suppose that our data actually contained no planned simultaneous attacks at all.

According to our model in Section 2, the fact that more than one attack occurred on a

given day would then be due purely to random chance, and the number of attacks on

any day in district i would follow a Binomial(ℓi, η) distribution. If we assume that the

number of potential disorganized insurgents that could launch attacks is large, and

the probability η of any one of them launching an attack is low, then this distribution

should be approximately xit ∼ Poisson (ηℓi). The total number of attacks observed on

any day across all districts will then be Poisson (η
∑

i ℓi). Within our model, consider

for example the simple case of two potential values of ϵjt ∈
{
ϵh; ϵl

}
occurring with

probability pij and 1 − pij respectively. Overdispersion in the presence of a single

insurgent group j would then take the mixture form

xit ∼ pijPoisson
(
ϵhαi,j + ηℓi

)
+ (1− pij)Poisson

(
ϵlαi,j + ηℓi

)
.

We can thus check for the existence of simultaneous attacks by looking for overdis-

persion in the observed pattern of attacks relative to a Poisson. According to the

Cameron and Trivedi [1990] test, the distribution of attacks is overdispersed relative
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to a Poisson distribution with p < 0.01 both in Afghanistan and in Pakistan.43 We

can thus reject with high statistical confidence the absence of coordinated attacks in

both countries.

We are further interested in assessing the quantitative importance of simultaneous

organized attacks. The traditional definition of overdispersion refers to additional

variance above and beyond what expected from a Poisson distribution, but this does

not have an easy interpretation as a specific quantity of coordinated attacks. We will

thus use a non-traditional definition of overdispersion, one that provides an estimate

of how many simultaneous attacks there are in our dataset.

An overdispersed Poisson distribution will have more high realizations (days with

a large number of attacks) compared to a Poisson distribution with the same mean.

These additional high realizations correspond to the simultaneous attacks that are of

interest.44 Our measure will take the actually observed distribution of attacks across

days and compare it to the theoretical Poisson distribution with the same mean.

Let g(x) = (f̄(x) − f(x))x, where f is the theoretical probability of observing x

attacks in a day, given a Poisson with the mean equal to the actual mean number of

attacks per day. Let f̄ be fraction of days when x attacks occurred in the empirical

distribution. Thus, g(x) is the excess number of attacks in the empirical distribution,

considering only days where there were exactly x attacks. LetG(x) = maxx

∑∞
r=x g(r),

where the object being maximized is the excess number of attacks in the situation

where there were x or more attacks in a day. We will define the number of excess

attacks of interest as G(x).

Using this definition, in our Afghanistan data 4% of all attacks are simultaneous

attacks of interest, and in our Pakistan data, 9%. These figures point to the use

of coordinated attacks in between one in twenty and one in ten episodes of violence

for our samples. In addition, such attacks appear more deadly (even per individual

incident) than regular attacks and are also more visible and traumatic for the civilian

population (consider for example the 9/11, Mumbai, and Bataclan attacks). Our

analysis in this paper has thus focused on a quantitatively relevant component of

violence within these countries, comprising several hundred recorded incidents.

43Including month fixed effects gives a p-value of approximately 0.002.
44That is, if there is a group that has an ϵ that is constant across all days, then it will lead to

no overdispersion and thus, according to our definition, no simultaneous attacks of interest. There
are attacks that occur on the same day by random chance: it is just that the fraction of days where
there are two attacks will be that of a poisson distribution, which is our baseline, and thus there are
no additional attacks due to coordination within the group.
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This evaluation of coordination relies on the Poisson approximation to our partic-

ular model of attacks. One might be concerned that the actual attack structure is, for

some unknown reason, not an overdispersed Poisson distribution. To provide direct

verification of the percentages reported above, we use attacks recorded in the Global

Terrorism Database (GTD).

For our periods of interest, there are 1, 692 attacks recorded in Afghanistan and

2, 610 in Pakistan. For each attack, the GTD records whether there are other “related”

attacks: these are generally attacks that occurred the same day but in a different

location.45 Importantly, this variable is not coded mechanically. Attacks are only

coded as “related” if there actually appears to be evidence of intentional relationship

between the attacks. For our period, 4% of the attacks in Afghanistan and 10% of

the attacks in Pakistan have “related” attacks in the GTD, for 511 attacks in total.

This is extremely close to our 4% and 9% estimates above based on overdispersion of

WITS and BFRS, validating our econometric approach.46

One might further wonder whether this tight relationship between overdispersion

and related attacks holds for countries other than Afghanistan and Pakistan. We

consider all countries listed in the GTD, and calculate the percentage excess of attacks

in each country using the GTD data. Figure N.7 shows a clear relationship between our

measure of overdispersion and the fraction of attacks that are coded as related. Table

N.8 considers regressions using our measure of overdispersion coded at the country-

year level, which allows us to include country fixed effects. We see that in years in

which there are more overdispersed attacks in a given country, that country is more

likely to have a greater fraction of their attacks coded as related.

The GTD also proves extremely useful in performing a number of validity checks

of our main approach. These include: (i) identification of the insurgent groups based

on GTD perpetrator information; (ii) assessment of the insurgent structures we un-

cover for time periods beyond the ones considered in the main analysis; (iii) ruling

out that coordinated attacks take place over time periods longer than the single day;

(iv) evidence that a single group and not multiple coordinated groups is typically

behind a set of simultaneous attacks; (v) evidence of the extent of credit claiming for

45The GTD codebook technically allows for “related” attacks that do not occur on the same day,
but we confirm in Appendix N that here are no related attacks of this type in our sample.

46Although the percentages are almost the same, our WITS and BFRS figures are based more
than three times as many attacks, and imply that we consider as coordinated hundreds of additional
attacks relative to the GTD.
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coordinated attacks; (vi) support for the assumption of a trade-off between military

value opportunity and signaling value of attacks; (vii) panel data evidence of the rela-

tionship between group strength and extent of coordination. This additional analysis

is available in Appendix N, where all details on specifications and interpretation are

provided.

7 Conclusions

This paper focuses on the empirical analysis of insurgency, with applications to

Afghanistan and Pakistan. Often the only type of information available about the

level and geographic diffusion of insurgent activity comes from incident-level attack

data. Recent advances in the analysis of the economics of conflict and post-war re-

construction have been possible thanks to this data, however limited it might be.47

Progress in understanding insurgency seems key in furthering knowledge of the de-

terminants and consequences of political violence in developing countries. Although

much of the analysis in this paper is necessarily context-dependent, it is informative

nonetheless for regional stabilization and local development goals. From a methodolog-

ical perspective, our contributions have a more general appeal and, as the availability

of microlevel datasets expands within the conflict literature, they may show promise

in other environments.

Some of the applications we have discussed may find a useful role in the study of

crime, especially for the case of criminal organizations. Outside of research in political

economy, the methods we propose based on conditional covariance structures across

units may be applicable in the field of industrial organization. Examples may include

the detection of collusion, price fixing, and of horizontal anticompetitive behavior

across firms, within and across markets, or the estimation of unobserved networks

amongst competitors.
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Online Appendices – Not For Publication

A Insurgency Organization & Economic Recovery

This section briefly discusses case studies chosen to highlight the economic impor-

tance of understanding insurgent organization in conflict and post-conflict environ-

ments. We focus on three different episodes: Iraq, Syria, and Libya.

Insurgent groups owe their success to their deep ties with noncombatant popula-

tions. By impeding reconstruction efforts, they can fuel popular dissatisfaction with

central authorities, thereby maintaining a steady flow of recruits and ensuring logis-

tic assistance for their agents. Insurgencies thus have a particular incentive to delay

aggregate economic recovery.

In Iraq, insurgents disrupted the electricity grid and seized control of oil resources.

Henderson [2005] describes the loop that linked insecurity and economic stagnation:

Inability to provide security had a profound impact on Iraq’s economic

recovery. In turn, inability to provide recovery had a profound impact on

Iraq’s security. Reconstruction delays fed into Iraqi feelings of resentment

and despair, which fueled insurgency and crime, thereby worsening the

security climate.

The connection of the study of insurgency with economic development comes from

this tight link between insurgent strategies and the failure of reconstruction efforts.

Understanding the exact nature of the Iraqi insurgency early on in the conflict could

have proven crucial in breaking the vicious cycle that Henderson [2005] observes.48

Uncertainty about the organization of the insurgency in post-2003 Iraq took several

forms. First, there was disagreement regarding the extent to which attacks represented

an insurgency at all.49 There was also confusion regarding its magnitude: as late as

the fall of 2004, the U.S. military still attributed 80 percent of attacks to random and

48Henderson is critical of the strategy actually used: “as violence worsened, the response of coalition
officials in charge of reconstruction was not to find a way to fight it more effectively. Instead, their
response was to withdraw into the heavily protected world of the Green Zone.”

49Eisenstadt and White [2005] write that “In the summer of 2003, Secretary of Defense Donald
Rumsfeld and General John Abizaid (head of U.S. Central Command) publicly disagreed about whether
the violence in the Sunni Triangle was the final act of former regime “dead-enders” or an incipient
insurgency against the emerging political order”. There was a similar disagreement in 2005 between
Vice President Richard Cheney and General Abizaid.
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not to political violence. Finally, there was heated debate about the organization of

the insurgency, once it was clear that one existed.50 Further complexity in the Iraqi

case stemmed from signs of evolution over time, as the New York Times reported: “the

insurgency was now organized regionally, and that evidence pointed to some planning

across regional boundaries”.51

The difficulty, and the importance, of understanding the structure of insurgencies

is not limited to Iraq. Consider recent Western efforts in Syria: “Sixteen months into

the uprising in Syria, the United States is struggling to develop a clear understanding

of opposition forces inside the country, according to U.S. officials who said that in-

telligence gaps have impeded efforts to support the ouster of Syrian President Bashar

al-Assad.”52

Beginning with a series of pro-democracy protests in 2011, the situation in Syria

quickly escalated into a full-blown civil war that has cost 250, 000 lives and displaced

almost 11 million Syrian citizens to the beginning of 2016. In the backdrop of a

ethnically and religiously divided population, this conflict quickly displayed a high

degree of complexity in the heterogeneity of parties involved [Smith, 2012], including

the Syrian state army loyal to Bashar al-Assad, Sunni Syrian rebels, the Islamic

State, Jabhat al-Nusra, Kurdish forces, and Hezbollah. Lack of understanding of the

structure of the insurgency in Syria has been one of the strongest deterrents to military

and humanitarian involvement of Western powers in this conflict [Jenkins, 2014] and

slowed down relief efforts.

Western countries were willing to lend support and provide prompt international

aid to moderate Sunni organizations, but the difficulty laid in identifying these rebels

and their true organizational linkages. The impossibility of separating the secular

moderates from the religious extremists among the Sunni opponents of the Alawite-

led government resulted in international paralysis. This led to further economic and

social deterioration, radicalization, and escalation of the conflict. Syria is now a

nearly failed state, fought over by Assad loyalists, the Islamic State, and the al-Qaeda

50The New York Times quotes senior U.S. intelligence sources stating that “It’s not just one group
of insurgents rallying under one cause. It’s multiple groups with different causes loosely tied together
by the threads of anti-U.S. sentiment, some sort of Iraqi nationalism, Muslim-Arab unity or greed”.
The lack of familiarity with this type of enemy appeared evident:“What makes it more difficult is
that you’re dealing with an insurgency without a single face”.

51http://www.nytimes.com/2004/10/22/international/middleeast/22insurgents.html?pagewanted=2& r=0
52http://www.washingtonpost.com/world/national-security/in-syria-conflict-us-struggles-to-fill-

intelligence-gaps/2012/07/23/gJQAW8DG5W story.html

47



affiliated Nusra front. Numerous attempts at a political solution by the Arab League

and the United Nations have failed.

Another relevant case is Libya post-Colonel Gaddafi. This event would require

in itself a fully accurate discussion, but as above for Iraq and Syria, we try to pro-

vide a basic picture from the perspective of the analysis of multi-group conflicts.

After 2011 and the violent overthrowing of the Gaddafi regime, Libya gradually de-

scended into full-blown factional violence with Islamic State factions jockeying for

control of oil rich areas together with two main armed groups: the Tobruk govern-

ment (elected democratically but in a deeply unstable political environment) and

the Muslim Brotherhood-supported General National Congress. To further compli-

cate the picture, other ethnic-based groups, like the Touareg, have also laid claim to

certain parts of the former Libyan state. Repeated failures to achieve stable Unity

governments and substantial ambiguity in the set of alliances struck among the vari-

ous groups have severely hindered the pacification response led by the United Nations

in the region. While the United Nations and the European Union have been holding

off decisive intervention, the east/west divide in the country has been increasingly

exacerbating.
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B Simultaneous Attacks: Theoretical Framework

and Qualitative sources

An insurgent group typically operates from an asymmetric position and does not

usually aim for military victory over its adversary [Kilcullen 2009]. Baloch separatists

need only convince the Pakistani government to allow an independent Balochistan,

not necessarily topple the government. A group that appears strong, however, will

have greater negotiating power vis-à-vis its opponent. It will also have more success

in recruitment and fundraising, as the noncombatant population is more likely to side

with a strong group. Launching simultaneous attacks is a signal of strength, because

such an attack requires coordination.

The basic idea for our theoretical framework is provided by Shapiro [2013]: insur-

gent groups face a trade-off between their degree of internal control and the safety of

their members, because the mere act of communicating makes members more vulnera-

ble to detection by government forces. Suppose that some particularly effective insur-

gent groups have managed to develop and maintain secure communication channels,

while other groups are plagued by government moles and eavesdroppers. Insurgents

benefit from the support of the civilian population for recruitment and fundraising,

and civilians are more interested in supporting well-organized and effective groups

than failing ones. In cases such as Afghanistan, insurgents also benefit from con-

vincing foreign civilians of their strength, as these foreign civilians then pressure their

governments to withdraw troops from an “unwinnable” conflict. Civilians do not know

exactly how strong the insurgents are, and insurgents thus wish to somehow signal

that their organization is strong and uncompromised, both to win local support and

to force foreign withdrawal.

A simultaneous attack necessarily involves communication in order to coordinate

the attack.53 If a weak insurgent group is vulnerable to government surveillance

when it attempts to communicate, while a strong group has successfully developed

communication methods that escape detection, then a simultaneous attack is costlier

for the weak group due to the exposure of its members. Simultaneous attacks thus

fit into the standard Spence [1973] signaling framework: such an attack is a credible

signal of strength because launching it is less costly for the strong group than the

53Shapiro and Siegel [2015] discuss how insurgent coordination is achieved through mobile phone
communication and ICT.
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weak group.

The qualitative literature supports the idea that simultaneous attacks have a sig-

nalling motivation. For example, Barno [2006] gives a specific example of a simulta-

neous attack on three border checkpoints where the media was deliberately alerted to

the attack and publicity appears to have been the main objective. Deloughery [2013]

provides a recent review of the literature and presents systematic evidence of the ad-

vantages of simultaneous attacks for terrorist organizations in terms of psychological

warfare, media coverage and appeal in the recruitment of new fighters, incentives that

operate within insurgencies as well.54

In reality insurgent groups launch a mix of simultaneous and individual stand-alone

attacks. We posit that this is because there is a trade-off between the signalling value

of attacking simultaneously in many districts versus the military value of attacking

separately in each district at the most opportune moment for that district. In Ap-

pendix N we discuss this hypothesis further and support it with regression evidence.

We also check implications of the signalling model just outlined above: for example, it

appears that (both in Afghanistan and in a cross-country sample) insurgents are less

likely to launch simultaneous attacks relative to stand-alone attacks in areas where

they have a limited presence and are thus potentially more vulnerable.

Our main objective in the paper is to use the fact that insurgent groups do launch

simultaneous attacks in order to identify the number of such groups and their ge-

ographic extent. We do not formalize the above signalling model of attacks –the

framework is standard. Instead, in Section 2 we build an econometric model of simul-

taneous attacks based on the assumption that all groups launch such attacks to at

least some degree.55

From a Western perspective, the 9/11 attacks in the United States are the most

obvious example of the salience of such simultaneous violence, but the phenomenon

is widespread. For example, in southern Thailand insurgent movements have adopted

similar tactics: “On April 28, 2004 groups of militants gathered at mosques in Yala,

Pattani, and Songkhla provinces before conducting simultaneous attacks on security

checkpoints, police stations and army bases” [Fernandes, 2008]. The Indian Mu-

54According to Kilcullen [2009], “the insurgents treat propaganda as their main effort, coordinating
physical attacks in support of a sophisticated propaganda campaign” (p. 58). See also Arce and
Sandler [2007]. Additional references for the qualitative literature are also provided in Appendix B.

55In the model presented below there are disorganized individual insurgents who attack randomly,
and thus even a particularly weak insurgent group would have an incentive to launch the occasional
simultaneous attack, in order to distinguish themselves from these “lone wolf” actors.
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jahideen, responsible for the 2008 Mumbai attacks, typically carry out simultaneous

attacks [Subrahmanian et al., 2013]. Kurdish nationalists and the Tamil Tigers are

known to have adopted simultaneous attacks as a strategy. In Africa, Boko Haram

in northern Nigeria has carried out coordinated attacks on multiple targets such as

churches, and Anderson [1974] describes coordinated attacks in Portuguese colonies.

Simultaneous attacks and suicides have been a trademark of international jihadist

organizations and of al-Qaeda in particular, making our approach well-suited to the

Afghan insurgency case. Because the empirical covariance matrix of attacks is ob-

served, these assumptions implying positive covariances driven by co-occurring inci-

dents are readily verifiable and they are in fact supported by the data. See discussion

at the end of Section 2.

51



C Decomposition of Covariance Matrix

Let γii′ =
∑

j αijαi′j denote the off-diagonal entry on row i and column i′ of ΓL.

Let γ̄ii′ be the corresponding entry of the covariance matrix in the observed sample.

Unfortunately, no empirical counterpart to ΓL is observed, and thus one will have to

be created by modifying the diagonal of the observed covariance matrix Γ̄.

To create a Γ̂L from Γ̄, a diagonal matrix Γ̂D will be subtracted from the latter

to produce the former. An intuitive method for doing this is “trace minimization”,

discussed at least as early as Ledermann [1940]. First, note that Γ̄ is a (sample)

covariance matrix, and is thus positive semi-definite. Γ̂L should also correspond to

a covariance matrix, and thus should also be positive semi-definite. Consider the

optimization problem

min
Γ̂D

Tr(Γ̂L)(10)

s.t. Γ̂L = Γ̄− Γ̂D, Γ̂D diagonal,

Γ̂D ≻ 0, Γ̂L ≻ 0

Here Tr() denotes the sum of diagonal entries of a matrix, and ≻ 0 indicates positive

semi-definiteness. The intuition for trace minimization is that the “extra” variance

present in the diagonal entries of Γ has the form of a full rank matrix, and thus in

order to recover a low rank matrix such as ΓL, as much of this as possible needs to be

removed.

Saunderson et al. [2012] show that the intuition of Ledermann and others was

correct in general. Specifically, the positive semi-definite matrix ΓL can be recovered

given Γ so long as it is sufficiently “incoherent”, and this property is satisfied by most

low rank matrices. Details are provided in Appendix C.1.

If N = 200, the the semi-definite program corresponding to (10) involves 200 ×
199 = 39, 800 constraints: each off-diagonal entry γ̄ii′ in the positive semi-definite

matrix Γ̄ must be equal to the corresponding entry in Γ̂L. Problems of this size are

feasible using modern semidefinite programming algorithms. We thus compute Γ̂L

using (10), and will use it as the basis for producing an estimate of insurgent group

presence in the next two subsections.
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C.1 Recoverability of Low-Rank Matrix

We are interested in the conditions under which the Γ̂L resulting from (10) will be

a consistent estimator for ΓL. It is clear that there are some matrices ΓL for which

the proposed method will be inconsistent:

Example 1. Suppose that there are three districts, and two groups. Group member-

ships are α·1 = (1, 0, δ) and α·2 = (0, 1, δ), and thus

ΓL =


1 0 δ

0 1 δ

δ δ 2δ2


for some small value δ. Suppose that there are disorganized insurgents such that

ΓD = I3. The minimum trace heuristic of (10), will then give an estimate

Γ̂L =


δ 0 δ

0 δ δ

δ δ 2δ


which has lower trace than the true ΓL so long as δ is small.

It is thus important to provide conditions for the matrix ΓL such that the proposed

method gives a consistent estimator. Saunderson et al. [2012] give such a character-

ization. First, Saunderson et al. [2012] define a subspace U as realizable if, for any

ΓL having column space U , and any ΓD, the minimum trace factorization algorithm

of (10) applied to Γ = ΓD + ΓL returns Γ̂L = ΓL. Next, they define the “coherence”

µ(U) of a subspace U of Rn as

(11) µ(U) = max
i∈{1,2,...n}

||PUei||

where ei are the standard basis vectors, and PU is the orthogonal projection matrix

onto U . They then provide the following sufficient condition:

Theorem 2 (Saunderson et al. 2012). If U is a subspace of Rn and µ(U) < 1/2, then

U is realizable.
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From an intuitive perspective, this restriction on coherence is equivalent to nothing

in the column space of ΓL being too close to the standard basis vectors. In the context

of estimating insurgent groups, the standard basis vectors represent groups that are

only present in one district. It makes sense that groups of this sort will result in

the procedure in (10) being inconsistent: a group that is only present in one district

is indistinguishable from disorganized insurgents, as they both only appear in the

diagonal entries of the covariance matrix.

Saunderson et al. [2012] also provide a further result, regarding the “realizability of

random subspaces”. They argue that “most” subspaces of dimension less than n/2 are

realizable. The intuition here appears to be that a random subspace of low dimension

is unlikely to include anything close to a standard basis vector. In general, then, if

the number of groups is small relative to the number of districts, the heuristic given

in (10) will provide a consistent estimator for the group structure. Cases where the

estimator will not be consistent are those where one of the groups is overwhelmingly

located in a single district.
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D Spectral Clustering Estimator

Spectral clustering is based on the “graph Laplacian” matrix

(12) L = D − ΓL

where D is a diagonal matrix with entries equal to the row sums of ΓL. The graph

Laplacian thus has off-diagonal entries equal to the negative of those of the adjacency

matrix, and diagonal entries such that all rows and columns sum to zero. The graph

Laplacian L has a rank of N−J , and thus has J zero eigenvalues.56 Spectral clustering

focusses on the number of zero eigenvalues for the associated graph Laplacian matrix

L, whereas the method used in the main text produces an estimate Ĵ of the number

of insurgent groups by examining (in a very broad sense) the rank of ΓL.

If ΓL were known, the number of organized groups could be calculated immediately,

and it would equal both the rank of ΓL and the number of zero eigenvalues of L.

However, the data available gives the sample covariances γ̄ii′ rather than the true γii′ ,

and thus a noisy Γ̂L must be used instead of the true ΓL. The simplest option for

actually implementing a spectral clustering approach is to use a modification of Shi

and Malik [2000]: use Γ̄ to construct L̄, and then count the “zero” eigenvalues of L̄.

In a finite sample, however, these eigenvalues calculated from L̄ are subject to finite

sample variation. In particular, random variation will result in positive γ̄ii′ entries in

some cases where the true γii′ is zero, and negative γ̄ii′ entries in some cases where

the true γii′ is positive. This random variation will tend to increase the rank of the L̄

relative to L. This problem is particularly severe for districts i for which there are few

attacks: the data provides little information on the group structure in these districts,

and if one object of interest is J , the total number of groups, the inclusion of these

particularly noisy districts could result in a substantial amount of additional noise in

the estimate Ĵ .

56The number of zero eigenvalues of the graph Laplacian matrix corresponds to the number of
connected components of the weighted undirected graph described by the adjacency matrix ΓL. This
is J , the number of blocks of ΓL.
The intuition for this result is relatively straightforward. Each Γj

L block has rank one. The
corresponding block of the diagonal matrix D has full rank. Setting the entries in this diagonal
matrix so that rows and columns of the graph Laplacian L sum to zero ensures that the rows (and
columns) of L corresponding to each Γj

L block are linearly dependent. The Γj
L block that was

subtracted, however, is only rank one, and thus the null space of the resulting block of L must be
rank one. This is true for every block in L, and thus the null space of L has dimension J . This will
also be the number of zero eigenvalues of L.
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A similar problem affects the approach presented in the main text, which is based

on using the the largest eigenvalues (or other components) of Γ̂L. Finite sample

variation will also affect these eigenvalues. The question thus arises whether it is

better to use Γ̂L directly, or instead use the corresponding graph Laplacian matrix

L. Direct use of Γ̂L requires confidence that the trace minimization algorithm in (10)

will work well in finite samples, while use of L avoids this issue because the diagonal

entries in question are subtracted away and thus are irrelevant. On the other hand,

using L requires labelling some eigenvalues as “zero” eigenvalues, despite the fact that

due to random noise all eigenvalues will probably be non-zero.57 A particular concern

here is that the eigenvalues in question are the smallest out of N eigenvalues. Monte

Carlo exercises (available upon request) suggest that the approach based on using

Γ̂L directly has better finite sample performance. We thus use this approach in our

analysis, as described in the main text. Below, we briefly discuss how the alternative

approach (based on the smallest eigenvalues of the graph Laplacian) might be applied.

A heuristic method is available based on “eigengaps” similar to those used by

Ng, Jordan, and Weiss [2002]. Sort the eigenvalues λ of L in increasing order, such

that λ1 is the smallest and λN the largest.58 The difference λk+1 − λk is defined the

kth eigengap. Ng, Jordan, and Weiss [2002] argue that a large eigengap indicates

that perturbation of the eigenvectors of L would not change the clusters produced

by spectral clustering. Luxburg [2007] thus suggests that the right choice for Ĵ is

a number such that λk is “small” for k ≤ Ĵ , and the Ĵth eigengap is large.59 The

intuition here is that if there truly are Ĵ eigenvalues that are zero, then these appear

to be non-zero in the finite sample only due to random variation. In contrast, the

Ĵ +1th and larger eigenvalues would be strictly positive even if the true L were used.

An examination of the Ĵth eigengap thus provides a heuristic test of whether the

choice of Ĵ was reliable, or whether small changes due to random variation might

57Eigenvalues that would be zero asymptotically will not be zero in a finite sample, because some
of the entries that are zero in ΓL will be positive in the calculated Γ̂L. When using a covariance
matrix that includes this finite sample variation, it is thus necessary to account for the fact that
eigenvalues that are zero in the population may not be zero in the sample.

58A first step to dealing with the problem of finite sample is to exclude districts with very few
attacks from estimation: for the analysis of the Afghan data, we used data only for those districts in
which there were 3 or more attacks (other cutoffs yielded similar results). This approach does not
fully solve the underlying issue, however. For simplicity the notation here assumes that no districts
are excluded on this basis and thus there are still N districts, and N eigenvalues.

59The underlying difficulty here is determining what exactly constitutes a “zero” eigenvalue, when
there is finite sample variation. The presence of a large eigengap would thus provide some confirma-
tion that an appropriate definition of “zero” has been chosen.
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result in a different number of zero eigenvalues.

Using this approach, the estimated Ĵ corresponds to an eigenvalue such that λk

is “small” for all k ≤ Ĵ . The presence of high eigengaps for very high values of k is

not relevant for the eigengap procedure, so long as Jmax is lower than these values.

Luxburg [2007] suggests that the cutoff between “small” and “large” should not be

larger than the minimum degree in the graph. This is trivially met by Ĵ = 1, but

would be violated by any much larger estimate. Although the “eigengap” approach is

intended to be heuristic rather than formal, it is possible to compare the first eigengap

to simulated data where there is no group structure. Compared to data where the

attacks in each district have been reassigned to a random date, the first eigengap in the

actual Afghanistan attack data is larger, and this difference is statistically significant

at the 95% level.

More formal tests could also be constructed. Each off-diagonal γ̄ii′ entry will

converges to γii′ as the number of time periods grows, and the Γ̄L matrix will converge

to ΓL. Thus, L̄ will converge to L. Asymptotically, the correct number of the sample

eigenvalues of L̄ will approach zero. Thus, from a theoretical perspective, a test

statistic similar to that given in Yao, Zheng, and Bai [2015] could be used to determine

the number of zero eigenvalues. This test statistic appears to have originated from

Anderson [1963], and a simplified version appears to be appropriate in this case: the

eigenvalues that are converging to zero are doing so at a
√
T rate, and thus for the K

smallest eigenvalues, the test statistic
√
T
∑K

k=1 λk or T
∑K

k=1 λ
2
k could be used.60

Unfortunately, the asymptotic distribution of these test statistics is not clear, and

it is also not obvious that a subsampling bootstrap approach would yield the correct

distribution either. Simulations suggest that there are certain cases where the correct

number of groups will only be obtained with high probability when a very large number

of time periods are observed. Specifically, consider the case where αij is positive but

very close to zero for some i and j. That is, there are members of group j in district

i, but there are very few of them. In this case γii′ will be very close to zero for all the

other i′ that contain members of group j. It is thus difficult to distinguish between i

containing its own separate group, and i being a part of group j. This suggests that

a formal test following this approach might be difficult to implement.

60The asymptotic argument is made with a fixed number of districts, N , and a growing number of
time periods, T .
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E Covariance Matrix with differing values of σ2

In the main text we assume that σ is constant for all districts, and we then nor-

malize it to σ2 = 1. Now suppose instead that some districts are easier to coordinate

than others. Continue to assume that Var(ϵj) = 1 for all groups j, but suppose that

the signal to group j in district i is ϵ̃ij = σ̃iϵj, where σ̃i is a district specific indicator

of how much coordination will be occurring in this district. In this case we will have

(13)

ΓL =


σ̃1σ̃1

∑
j α1jα1j σ̃1σ̃2

∑
j α1jα2j

σ̃2σ̃1

∑
j α2jα1j σ̃2σ̃2

∑
j α2jα2j

... σ̃iσ̃i

∑
j αijαij

σ̃1σ̃i

∑
j αijα1j ... σ̃iσ̃i′

∑
j αijαi′j

...


The transformation to a correlation matrix in this case will be

Γcor
L = D(σ̃2

·

∑
j

α·jα·j)
−1/2ΓLD(σ̃2

·

∑
j

α·jα·j)
−1/2,

where D() indicates a diagonal matrix with the specified entries on the diagonal. The

resulting ΓL does not contain any σ̃ terms, and is thus identical to the ΓL used in the

main text. We thus see that district specific differences in coordination do not affect

the analysis.

Now consider the case where σ differs across groups instead of across districts.

That is, Var(ϵj) = σj. In the case where groups do not overlap there is only one group

per district, and thus the situation is identical to the above where σ̃ varied by district.

In the case where groups do overlap, however, the transformation to Γcor
L would no

longer eliminate the σ terms. Thus, if we assume that σ2 = 1 for all groups when this

is not in fact the case, our estimator for {αij} will be inconsistent. To see what will

happen here, let α̃ij = σjαij. The covariance matrix will have the form

(14) ΓL = σ2



∑
j α̃1jα̃1j

∑
j α̃1jα̃2j∑

j α̃2jα̃1j

∑
j α̃2jα̃2j

...
∑

j α̃ijα̃ij∑
j α̃ijα̃1j ...

∑
j α̃ijα̃i′j

...
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which is exactly the same as 1, except with α̃ij replacing αij. Thus, our estimates α̂ij

will be consistent for α̃ij. This would affect the estimates shown in Figures 6 and 8.

If there is a group with low σj that thus launches almost no simultaneous attacks,

this group would show up only in very light colours in these maps. This would not

necessarily present a problem, since it would still be obvious where in the country

such a group was operating. The only issue that would arise is that specific districts

where there was overlap with other groups would seem to be dominated by those

other groups, when the reality is that those other groups are simply engaging in more

coordinated attacks.

If in reality σ differs based on pairs of districts, and so is actually σii′ , then the

situation becomes more difficult. In the extreme case, insurgents in each district would

coordinate with those in all adjacent districts but never with those that are further

away. In this case, there is no plausible clustering of districts into groups, because each

district exhibits the same similarity with all of its neighbours. The idea of clustering

is that the underlying structure can be simplified into cluster memberships. In the

extreme case this is ineffective, and thus our model is inappropriate.

A less extreme version of this would be that there is a group structure, but insur-

gents in the same group are more likely to coordinate with districts that are geograph-

ically close to them rather than districts that are further away. In this case, clustering

the data could return meaningful results. The clustering algorithm would have to be

carefully selected, however, to not incorrectly split a group just because there was

some internal variation regarding which districts were coordinating with which other

districts.

For example, suppose that districts are evenly spaced along a one dimensional line,

and within the same insurgent group there will only be coordination between districts

that are within a distance d of each other. In this case the covariance matrix does not

consist of blocks as in Equation 2. Instead replacing each block will be a band, where

the entries outside of the band are 0 because these district pairs, while in the same

group, are too far away to coordinate. We thus have what we might call a diagonal

matrix instead of a block diagonal matrix.

This situation would not be handled correctly by the approach we use in this

paper, because we would incorrectly split a group based on the fact that it has this

internal structure. It seems as though some sort of improved method should be able

to cluster districts correctly here, because there is no correlation between districts
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in different groups but some positive correlation between at least some districts in

the same group, and there are enough of these positive correlations to connect the

entire group. One method that could potentially resolve this problem would be to

use variant of correlation clustering [Bansal, Blum & Shuchi 2004]. We leave this for

future work.
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F Clustering Details and Estimate for α

As a first step, the correlation matrix Γ̂cor
L is readily obtained by imposing diagonal

elements equal to 1 and appropriately rescaling rows and columns of the covariance

matrix Γ̂L by the square root of the corresponding diagonal entry of Γ̂L.

For many k-means algorithms, however, a distance matrix rather than a correlation

matrix is needed. Such a distance matrix can easily be constructed using cosine

distances: 1−γcor
ii′ is the cosine distance between i and i′, where γcor

ii′ is the off-diagonal

entry of Γcor
L corresponding to districts i and i′.61 The cosine distance between two

districts with the same group present will be zero asymptotically, while it will be one

when the districts have different groups present.

For the particular data that we will be considering, a weighted clustering approach

appears to be called for because a district with very low αij for the group j that is

present will have very noisy off-diagonal entries. We do not explore optimal weights,

instead using ad-hoc weights corresponding to the square root of the diagonal entries

of Γ̂L. Krishna and Narasimha [1999] provide a weighted k-means algorithm, based

on genetic optimization: we use the Hornik, Feinerer, Kober, and Buchta [2012] im-

plementation of this algorithm. Using unweighted clustering instead does not change

any of the results discussed below substantially.

Suppose that each organized group that is present has members in a large number

of districts, and that no single district has a particularly large αij. Let Ij be the set

of districts that have members of organized group j. Then, since an assumption of

the model was that the organized groups do not overlap, an estimate of αij for i ∈ Ij

can be produced via the following approximation, using Γ̄j, the relevant block of the

original Γ̄.62

Specifically, note that a sum across the off-diagonal entries of a row of Γ̄ corre-

sponding to district i is
∑

i′ ̸=i αijαi′j. If there are a large number of districts with

61The construction of a distance matrix is trivial because any correlation matrix is also an interpoint
angle matrix, and these angles can be used directly to construct a cosine distance matrix.

62A potential alternative approach to the one presented here would be to use the diagonal entries of
Γ̂L to produce estimates of {αij}. However, this matrix is itself the output of a semi-definite program
based on Γ̄. The approach presented below has the advantage of using the off-diagonal entries of Γ̄
directly.
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members of j, then it is reasonable to use the approximation∑
i′ ̸=i

αijαi′j ≃
∑
i′

αijαi′j(15)

= αij

∑
i′

αi′j

= αijaj

where aj =
∑

i′ αi′j is the same for any choice of district i within Ij. The row sums

of the off-diagonal entries of each block of Γ̄j thus give the relative prevalence of

organized group members in each district in Ij.
63

63While it would be possible to use non-linear programming or other techniques to develop an
estimator with more desirable properties, the approximate estimator has at least two advantages.
First, the estimator has an intuitive interpretation: Γ̄ is a covariance matrix, and the sum across the
off-diagonal entries of a row of Γ̄ thus gives an indication (in a heuristic sense) of how closely linked
attacks in a given district are with attacks in other districts. Second, if in the data a given district i
experiences only a small number of attacks, then the off-diagonal entries γ̄ii′ will be relatively small
for that district, and thus i will not introduce substantial noise into estimates α̂i′j for other districts
i′. Developing an unbiased estimator that also possesses such properties appears to be a non-trivial
undertaking.
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G Eigenratio type estimators: Simulations

To better understand the finite sample properties of eigenratio type estimators,

we conduct a series of simulations. For simplicity, we do not use a model with dis-

crete attacks, as presented in Section 2, but instead use a more standard model with

normally distributed random variables. Let there be J = 4 groups, N = 100 dis-

tricts, and T = 2000 days. Let there be exactly one group in each district, with

αi1 ∼ Uniform(0, 1) i.i.d. for i ∈ {1, ..., 25}, and no other group present in those

districts. In the same fashion, only Group 2 is present in districts 26-50, only Group

3 in districts 51-75, and only Group 4 in 76-100.

Our simplified model of attacks is that in each period t for each group j, an i.i.d.

draw ϵtj ∼ N(0, σ2) is made. The number of attacks is then given by

(16) xit =
∑
j

αijϵtj + uit

where uit ∼ N(0, 1), i.i.d.

We then consider eigenvalues associated with the (N by N) covariance matrix of

attacks. We perform 100000 simulations for each of σ2 = 1, σ2 = 0.1, σ2 = 0.05, and

σ2 = 0, generating a total of 400000 simulated sample covariance matrices.64

Figures G.1 - G.3 graphically display the results of these simulations. Figure G.1

shows the eigenvalues of the covariance matrix. We see that the group structure is

immediately apparent at σ2 = 1, still clear at σ2 = 0.1, but somewhat unclear at

σ2 = 0.05. There is no group structure with σ2 = 0, and thus Figure G.1d shows the

distribution of eigenvalues under J = 0.

Figure G.2 shows eigenratios, with the leftmost eigenratio being the ratio between

the largest (i.e. leftmost) and second-largest eigenvalues, and so forth. Here, on

average the largest eigenratio clearly corresponds to J = 4 when σ2 is large, but this

is no longer the case with σ2 = 0.05. Figure G.2d shows that the distribution of

eigenvalues when J = 0 leads to a somewhat peculiar distribution of eigenratios: the

first few and last few eigenratios are much larger than the others. Figure G.2d thus

illustrates why it is important to have some maximum number number of possible

64Note that in the main text, the choice of σ2 = 1 is a normalization, because the {αij} are
unknown, and a decrease in the choice of σ2 would simply result in higher α̂ estimates. In contrast,
in the simulations in this appendix, the distribution of the {αij} are given, and thus choosing a
different value σ2 changes the signal to noise ratio for the attack covariance matrix.
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groups, Jmax. The eigenratios associated with the very smallest eigenvalues (towards

the right hand side of Figure G.1d) become quite large. With N = 100, and no Jmax,

choosing Ĵ based on the largest of all the eigenratios would lead to many Ĵ estimates

of 99 groups. However, as noted in Ahn and Horenstein [2013], any intermediate

choice of Jmax is unlikely to affect the results.

Figure G.3 shows the distribution of estimates Ĵ with Jmax = 50. Figures G.3a and

G.3b show that the eigenratio approach works very well when the signal to noise ratio

in the covariance matrix is relatively high. Figure G.3c, however, shows that with a

noisier covariance matrix, the estimated values for Ĵ tend to be too low. Figure G.3d

shows the distribution of estimates of Ĵ when there is no group structure.

In both of Figures G.3c and G.3d, Ĵ = 1 is the modal estimate. Figure G.3d shows

that the median estimated Ĵ is below the true value J = 4 (the mean is above, but this

is less apparent from the figure). However, Figure G.3d shows the case with no group

structure at all, and thus would not change regardless of the true value of J . The bias

of the estimator thus cannot be signed: this is a natural result of J and Ĵ both being

integers bounded between 0 and 50. Bias correction appears to be non-trivial.

Figure G.3c provides a possible explanation for why estimates of Ĵ = 1 appear

so frequently in Table 5. The finite sample properties of eigenratio type estimators

are such that there is a tendency to estimate low values of Ĵ in cases where the

covariance matrix is noisy. This is due to the distribution of eigenvalues resulting

from the noise, as shown in Figure G.1d. The evidence provided in Table 5 should

thus mainly be taken as an indication that the null hypothesis of no group structure

should be rejected. Figure G.3c shows how estimates Ĵ = 1 occur frequently when

there is actually a group structure with J > 1.65

G.1 Comparison with Hierarchical Splits

To compare our eigenratio type estimator with the estimator based on hierarchical

splits, we need to simulate data with discrete attacks, as the permutation test used

require integer numbers of attacks to permute. Let the number of attacks by group j

in district i at time t be drawn from a Poisson(λijt) distribution, where λijt = 0 with

probability 0.9, and λijt = αij with probability 0.1 (this is equivalent to ϵit having

65In the empirical literature, “low” estimates for the number of factors (compared to other methods)
are obtained by Choi et al. [2014] and Wu et al. [2011]. Figures G.3b and G.3c appear in line with
results reported (using actual data) in the supplement to Baurle [2013].
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Appendix Figure G.1: Eigenvalues
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(b) σ2 = 0.1
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(c) σ2 = 0.05
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(d) σ2 = 0

Points indicate means over 100000 simulations. Bars show interquartile range.
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Appendix Figure G.2: Eigenratios
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Points indicate means over 100000 simulations. Bars show interquartile range.
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Appendix Figure G.3: Estimated number of groups (Ĵ)
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Histograms of estimated number of groups, over 100000 simulations. True value
J = 4 shown in red.
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Appendix Figure G.4: Estimated number of groups (Ĵ)
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(b) Hierarchical Splits

Histograms of estimated number of groups, over 100 simulations. True value J = 2
shown in red.

a bernoulli distribution with probabilities 0.9 and 0.1). We consider J = 2 with the

non-zero αij entries drawn from a Uniform(0, 0.25) distribution, as well as J = 4 with

the non-zero αij entries drawn from a Uniform(0, 0.5) distribution.

Results are shown in Figures G.4 and G.5. In both cases, the method based on

hierarchical splits substantially outperforms that based on eigenratios. A particular

advantage of the hierarchical splits is that there are no estimates with very large values

of Ĵ , whereas with the eigenratio type approach a small number of simulations yield

extremely large values for Ĵ . The hierarchical split based method is also less likely

to stop at Ĵ = 1, and thus estimates in both tails appear to be less likely with this

method.
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Appendix Figure G.5: Estimated number of groups (Ĵ)
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Histograms of estimated number of groups, over 100 simulations. True value J = 4
shown in red.
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H NNMF Consistency

Conditions under which Γ̂L will converge to ΓL have been discussed in Appendix

C.1. We now consider conditions under which a non-negative matrix factorization of

ΓL will recover the {αij} group structure. It is clear that the index numbering of

the groups cannot be recovered, because ΓL is invariant to relabelling of groups. The

index numbering of groups is irrelevant throughout our analysis, however, and thus

we are only concerned with whether the group structure can be recovered up to a

reindexing.

Huang, Sidiropoulos, and Swami [2014] discuss uniqueness of symmetric non-

negative factorizations at some length. They conclude that while there are no obvious

necessary conditions to check for uniqueness, simulations reveal that multiplicity of so-

lutions does not appear to be a problem unless the correct factorization is extremely

dense: factorizations with 80% non-zero entries are still reconstructed successfully.

The ΓL matrices considered in this paper would generally be expected to have a rela-

tively sparse factorization.
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I Reference Distributions

We consider three different “reference distributions”. First, suppose that the struc-

tural model presented in Section 2 is correct. In this case, the distribution of the num-

ber of attacks by disorganized militants in district i is the same for all periods, with

expected value ηℓi. Thus, under the null hypothesis that there is no group structure,

the observed attack data is weakly exchangeable: within a given district, permuting

the time indices does not change the joint distribution of the attacks.66 The total

number of such permutations is huge, and thus rather than perform calculations using

the entire set we consider only a random subset of these permutations. By construc-

tion, the permuted data exhibits no group structure: all the off-diagonal entries of

the sample covariance matrix will be zero asymptotically. To construct the desired

reference distribution, we treat each of these permutations as if it were the observed

data.

Now, suppose instead that the structural model assumed is not exactly correct, and

there is some cross-time variation in the expected number of attacks by disorganized

militants within a district. Specifically, suppose that the probability that a disorga-

nized militant launches an attack is not a constant η, but rather varies across months.

The expected number of attacks on a given day in month m is then ηimℓi, and will

differ by month. In this case, the observed attack data is still weakly exchangeable,

but only within a given district and a given month. We can thus still construct a ref-

erence distribution, provided that observations are permuted only within each month

for each district. In this case, the covariance matrices may not have all off-diagonal

entries zero asymptotically: it could be that ηim and ηi′m are positively correlated, for

example.

Finally, suppose that the expected number of attacks by disorganized militants

varies at the daily level, rather than the monthly level. The general case, with ηitℓi

attacks expected in district i at time t, is so general that it does not appear to

allow for any permutations. However, suppose that the number of expected attacks

is instead ηtℓi, where ηt now does not differ across districts.67 This might be the case,

66The intuition here can be provided by an example. Suppose there are three periods. If there is
no group structure, then the probability of observing {x1, x2, x3} in a given district must be equal to
the probability of observing {x1, x3, x2}, because the number of attacks is i.i.d. across time within a
given district.

67This gives the disorganized militants the same structure an additional organized group. The test
against the null hypothesis in this case is thus related to whether there is an organized group present
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for example, if there were particular days that, for whatever reason, generated large

amounts of random violence. In this case, observations are “approximately” weakly

exchangeable via the following sort of permutation, inspired by Good [2002]. Find

a pair of districts i and i′, and a pair of times t and t′, such that the following two

conditions hold: there were the same number of attacks x in district i at time t and

in district i′ at time t′, and there were the same number of attacks x′ in district i at

time t′ and in district i′ at time t. Permute the data by swapping x and x′ in these

four entries.68 These permutations are attractive from an intuitive perspective, as

they retain not only the same number of total attacks in each district, but also the

same number of total attacks on each day. In the Afghan data, there are relatively

few attacks on any given day and thus an enormous number of possible permutations

of this sort.

I.1 Additional reference distribution

The purpose of generating permutations is to compute distributions of test statis-

tics, and one of the most obvious test statistics is the fraction of covariance explained

by the group structure. Covariance matrices are positive semi-definite, and thus have

a spatial interpretation as points in Euclidean space that can be used in order to

consider the “between sum of squares” and “within sum of squares” produced by any

given clustering. With the permutations just proposed, however, the contribution

of different districts to the total sum of squares will generally be different between

different permutations, and thus some permutations may be more amenable to clus-

tering than others. In addition, the permutations may in general be more amenable

to clustering than the actually observed data, which complicates the interpretation of

that is active in some districts but not others. Under the null hypothesis, the off-diagonal entries of
the sample covariance matrix should be directly proportional to the total number of attacks in the
districts in question.

68To see why this weak exchangeability holds “approximately”, note that the distribution of attacks
is binomial. Approximate the binomial with a Poisson distribution with expectation ηtℓi. Then for
observations of the type just described

Pr(x|ηtℓi)Pr(x′|ηt′ℓi)Pr(x′|ηtℓi′)Pr(x|ηt′ℓi′) =
(ηtℓi)

x

x!
e−ηtℓi

(ηt′ℓi)
x′

x′!
e−ηt′ℓi

(ηtℓi′)
x′

x′!
e−ηtℓi′

(ηt′ℓi′)
x

x!
e−ηt′ℓi′

= Pr(x′|ηtℓi)Pr(x|ηt′ℓi)Pr(x|ηtℓi′)Pr(x′|ηt′ℓi′)

by rearranging terms. The canonical reference for multivariate permutations appears to be Pesarin
[2001], although this specific type of permutation is not described. Good [2005] provides an accessible
introduction to permutation tests.
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the permutation test. A way to avoid this would be to use only those permutations

where each district makes the same contribution to the total sum of squares as in the

actually observed data. While this would be an improvement, the correlation matrix

Γcor is what is block diagonal, and thus is the most appropriate object to analyze

using a sum of squares decomposition. To keep the contribution of each district to the

total sum of squares the same when considering this correlation matrix, we can add

an additional requirement that the diagonal entries of the covariance matrix remain

the same as those in the actually observed data. This ensures that the transformation

to the correlation matrix will involve division by the same quantities as in the actual

data, and thus the contribution of each district to the total sum of squares in the

correlation matrix will remain the same in the permutation as in the actual data. The

permutations that satisfy these additional criteria are a subset of the “swap” permu-

tations discussed above; however, there does not appear to be a way to generate a

permutation of the desired type by randomly choosing swaps. It is possible, however,

to create valid permutations through the use of an integer program. Let the variables

for this program be binary variables xr
ti, which is equal to one if there were r attacks

on day t in district i, and equal to zero otherwise. A valid permutation will satisfy

the constraints

∑
r

xr
ti = 1 ∀t, i(17)

T∑
t=1

xr
ti =

T∑
t=1

xr,actual
ti , ∀i, r(18)

N∑
i=1

∑
r

rxr
ti =

N∑
i=1

∑
r

rxr,actual
ti ∀t(19)

T∑
t=1

(
∑
r

rxr
ti)(
∑
r

N∑
i=1

rxr,actual
ti ) =

T∑
t=1

(
∑
r

rxr,actual
ti )(

∑
r

N∑
i=1

rxr,actual
ti ) ∀i(20)

where xr,actual
ti is a constant corresponding to the actually observed data. The first

constraint simply ensures that there is a number of attacks on each day in each district.

The second constraint ensures that distribution of attacks within each district is the

same as in the actually observed data: this also ensures that the diagonal entries of the

covariance matrix are the same as in the actually observed data. The third constraint
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ensures that the number of attacks on each day is the same as in the actually observed

data.69 The fourth constraint ensures that the sum of each row (and column) of the

covariance matrix is the same as in the actually observed data.

A solution to this binary integer program always exists, because the actually ob-

served data will always satisfy the constraints. To randomly generate a solution to

the program, we choose a random objective function, and stop at the first integer

solution obtained. Running the program repeatedly generates a random sample of

permutations with the desired characteristics.

Table I.1 performs the same analysis as 1, except using the above reference distri-

bution instead of using auxiliary geographic information.

69This is slightly weaker than the “swap” permutations described above, which preserve the distri-
bution of attacks within each day. There does not appear to be a need for this stronger constraint,
and so we relax it here.
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Appendix Table I.1: Hierarchical model without geographic information

Afghanistan Pakistan
I II

Split at (1)? Randomly shuffled data (mean) 234.06 101.68
Std. dev. 0.15 0.11
Actual data 234.02 101.01
p-value 0.40 0.00

Split at (2)? Randomly shuffled data (mean) 47.02
Std. dev. 0.09
Actual data 46.78
p-value 0.01

Split at (3)? Randomly shuffled data (mean) 49.32
Std. dev. 0.08
Actual data 49.17
p-value 0.04

Split at (4)? Randomly shuffled data (mean) 17.01
Std. dev. 0.03
Actual data 17.01
p-value 0.48

Split at (5)? Randomly shuffled data (mean) 24.92
Std. dev. 0.06
Actual data 24.82
p-value 0.08

Split at (6)? Randomly shuffled data (mean) 20.08
Std. dev. 0.06
Actual data 19.98
p-value 0.07

Split at (7)? Randomly shuffled data (mean) 21.52
Std. dev. 0.06
Actual data 21.45
p-value 0.14
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J Estimation using monthly covariance matrices

Suppose that attack probabilities are relatively small. Then the number of at-

tacks by unorganized militants can be approximated using a Poisson(ζimηℓi) distri-

bution instead of using the actual Binomial(ζimη, ℓi) distribution. Similarly, the dis-

tribution of attacks by members of an organized group can be approximated with

Poisson(ζimϵtjαij) in place of Binomial(ζimϵtj, αij).

Now, suppose that there are a total of xim attacks in district i. Conditional on

there being a total of xim attacks, the distribution of these attacks across days is given

by a Multinomial(xim, pi) distribution, where pi is a probability vector with elements

of the form

pit =
ηℓi +

∑
j ϵtjαij∑

t′ (ηℓi +
∑

j ϵt′jαij)

If in some other district i′ there were xi′m attacks, then the covariance of daily attacks

has the useful form

Cov(xim·, xi′m·) = ximxi′m

∑
t

pitpi′t −
xim

T
· xi′m

T

= ximxi′m(
∑
t

pitpi′t −
1

T
· 1
T
)

Cov(xim·, xi′m·)

ximxi′m
= SCov(pit, pi′t)

where SCov(pit, pi′t) gives the sample covariance for a given draw of ϵ. The first

line of the above holds because each attack decision is independent given both the

total number of attacks and the realization of ϵ. If the ϵ are constructed such that∑
t′ ϵt′j = 1, then the denominator in the expression above for pit will simplify such

that

SCov(pit, pi′t) =

∑
j αijαi′jσ

2
j

(Tηℓi +
∑

j αij)(Tηℓi′ +
∑

j αi′j)

The Tηℓi +
∑

j αij term can be taken to be the “average” number of attacks, which

implies that α̃ij =
αij

Tηℓi+
∑

j αij
is the fraction of attacks in district i that group j will
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be responsible for. Then

Cov(pit, pi′t) =
∑
j

α̃ijα̃i′jσ
2
j

Here α̃ and σ2 are not separately identified. If the normalization σ2
j = 1 is used, then

the estimated α̃ describe relative degrees to which groups are more or less responsible

for attacks, across districts.
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K Coding of attack vs. defence

A possible concern with the attack data we use is that, while classified as insurgent

attacks, these incidents are actually in response to government actions. Thus, any

correlation we discover between districts would not be indicative of the structure of

insurgent groups, but rather the organization of the counter-insurgency.

There are two situations that are of particular concern. First, there is the danger

that a police attack on an insurgent stronghold might be included in our data as

an attack simply because the insurgents shoot back. Second, even if our data only

includes incidents initiated by the insurgents in a tactical sense, these incidents may

be initiated by the government in a strategic sense. For example, suppose that a

mountainous area is known to be insurgent controlled, and the government wants

to change this. It might send several patrols deep into the mountains. Insurgents

that happen to be present in the area might then attack these patrols as targets

of opportunity. These attacks could then show up in our dataset as simultaneous

attacks, but this would be evidence of coordination by the government, rather than

by the insurgents.

The easiest dataset to use to consider these issues is the Global Terrorism Database

(GTD), which has much more detailed coding of events than either WITS or BFRS.

The GTD has a smaller number of incidents overall, which is why we do not use it as

our main datasource, but as shown in Section , this dataset gives effectively the same

results, albeit with a smaller number of districts. Thus, if we can show that the above

problems do not occur with the GTD, this suggests that they are not responsible for

the results we report in the paper.

The GTD only includes incidents where non-state actors are the attackers. Thus,

it specifically excludes incidents such as police raids. This can be seen in the dataset

because a small number of incidents (about 0.1%) are coded as doubtful because the

attack could been by a state actor. In a few of these, the additional notes explicitly

give as the reason that the police may have fired first. The other 99.9% of attacks are

not believed to be initiated by government forces, and thus simultaneous government

attacks are not contaminating the data.

The second possibility is that a strategic decision by the government leads naturally

to simultaneous attacks by the insurgents without any insurgent planning can also be

checked using notes that accompany the GTD entries. Attacks on government forces
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could occur when these forces are on patrol, or they could occur when the government

forces are stationary. If the forces are on patrol, it could be that they have entered an

insurgent held area, and it is obvious that if many patrols simultaneously enter then

they will be simultaneously attacked. On the other hand, if the forces are stationary,

then there is no particular reason for the insurgents to naturally attack these forces

simultaneously, unless there is coordination on the part of the insurgents. A police

checkpoint, for example, could be attacked today, but could equally well be attacked

tomorrow, and thus, beyond random chance, the simultaneous attacks that do occur

would be due to insurgent coordination.

The question thus becomes whether insurgents strike mainly when government

forces are on patrol, or when they appear to be stationary. In the GTD data, there

are a total of 124 sets of simultaneous attacks listed for Afghanistan. In the sum-

mary description of these attacks, “patrol” occurs in descriptions in 4 sets of attacks,

“checkpoint” appears in descriptions in 25 sets of attacks, and “post” or “checkpost”

appears in descriptions in 31 sets of attacks. A qualitative examination of the descrip-

tions suggests that many of the remaining attacks are aimed at targets that would

best be described as “stationary” (e.g. police chiefs, embassies, towns). It thus ap-

pears that insurgents mainly attack government forces when they are stationary. This

strongly suggests that government strategic decisions do not determine the precise

day when the insurgents will attack, and thus the observed simultaneity really is due

to insurgent coordination, rather than being a mechanical product of the strategy of

government forces.
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L Sindhudesh Liberation Army

The first recorded attack in the GTD under the SDLA banner is recorded on

November 2nd, 2010 when incident (ID number 201011020003) states:

“11/02/2010 : On Tuesday, in Hyderabad, Sindh, Pakistan, a portion

of rail track was damaged when unidentified militants detonated an im-

provised explosive device, wounding four people. Another bomb was found

and defused be security forces at the scene. A two-page pamphlet issued

by Sindhu Desh Liberation Army (SDLA) ‘chief commander’ Darya Khan

was found on the spot. The pamphlet enlisted 19 points, mentioning issues

of Sindh and targeting what it called Punjabi imperialism.” 70

When reading the entries for the GTD simultaneous incidents of Karachi (201102110009)

and Hyderabad (201102110005) on February 2, 2011, which are explicitly listed as

not being part of multiple incidents, the GTD appears uninformed by these events.

Consider (201102110005) notwithstanding explicit claiming by the SDLA (possibly

discarded as not credible):

“02/11/2011: On Friday morning, in Bengali Colony of Hussainabad

in Hyderabad, Sindh, Pakistan, unidentified militants blew up railway tracks,

causing no casualties but damaging the tracks. A few pamphlets were found

at the blast sites carrying the name of an unknown group, Sindhu Desh

Liberation Army (SDLA).”

Subsequently, the GTD identifies two attacks in Sindh in the month of November

2011. None of these attacks is again classified as part of a multiple incidents event

(i.e. coordinated attacks). It is only on February 25th, 2012, about a year after our

methodology singles out SDLA activity in Sindh, that coordination of SDLA is finally

70And the next day GTD records incident 201011030021 “11/03/2010: On Wednesday, near
Nawabshah, Sindh, Pakistan, unknown assailants detonated an improvised explosive device on the
Karachi-Lahore railroad. The blast damaged an eight-inch long portion of up-track and caused rail
traffic to be suspended for over three hours. A bomb disposal squad later discovered a second bomb
and successfully defused it. No casualties were reported. Sindhu Desh Liberation Army (SDLA), has
claimed the responsibility for the blasts. The organization’s purported chief commander, Darya Khan,
has threatened that it would continue to carry out such attacks in future in order to get their ”right
to liberation” recognized by the United Nations.”
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detected in the GTD, with multiple entries (12 entries, listed explicitly as being part

of multiple incident).71

The BFRS data mentions in its comment section the SDLA only on 4 of the 41

attacks taking place on the month of November 2011 in Sindh. Of these 41 attacks,

we can observe that only 10 are isolated incidents, while 31 attacks occur in bundles

of 2 in a day (5 multiple incidents) or 3 attacks in a day (7 multiple incidents). By

this time, our methodology is picking up SDLA coordinated activity since early 2011,

information clearly missed both in the GTD and in the BFRS.

71Incident 201202250003 states “02/25/2012: Explosives planted along railway tracks detonated in
Jamshoro district, Sindh province, Pakistan. The tracks were damaged, but there were no human
casualties. This was one of 12 explosive devices planted on railroad tracks in Sindh province on
February 25, 2012. Sindhu Desh Liberation Army (SDLA) claimed responsibility, stating that people
were fighting nationally and internationally for Baloch independence.”’ In addition to the one above,
incident GTD ID’s are all those listed 201202250012-201202250022. On May 2nd 2012 the SDLA
followed suit with 21 coordinated bomb attacks on the same day on banks around Sindh province.
In the month of May 2012, SLDA activity caused 9 deceased and 30 wounded victims.
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M Additional Figures & Tables for Section 5

Appendix Figure M.6: from Jones [2008]
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N Additional Analysis: Global Terrorism Database

Check 1. Our results indicate that the group structure we estimate for Pakistan

corresponds to ethnic homelands. We might thus be concerned that in fact our method

is not picking up individual insurgent groups, but rather some broader aspect of

coordination within the same ethnic group. The GTD includes some information on

the identities of attackers, and we can use this to cross-check our estimated group

structure.72 We examine this data for simultaneous attacks in Pakistan during the

period that we study. In Balochistan, the GTD lists 38 attacks. Of these, 32% are

ascribed to the Baloch Republican Army, and the remainder are listed as unknown.

In the Federally Administered Tribal Areas and North-West Frontier Province, there

were 167 attacks. Of these, 31% were ascribed to the (Pakistani) Taliban, 4% to

Lashkar-e-Islam (which later joined the Taliban), and the remainder were unknown.

Thus, in these cases, our results match what evidence is available: our method finds

one group in Balochistan and one more in the area near the Afghan border. The

GTD records very few attacks in Punjab, and most of these are Taliban attacks in

the part of Punjab nearest to the Afghan border. A comparison for Punjab is thus

unfortunately not available.

In Sindh, the GTD reports 24 attacks, but 20 of these involve an unknown group.

In the next year, however, there are 54 attacks reported, with 61% of these ascribed to

the Sindhu Desh Liberation Army. As discussed in Section 5.2, our method appears

to pick up an organized group operating across Sindh almost a year before this would

have been visible by examining the group identification in the best available datasets.

Overall, we see that the GTD reports a single group corresponding to our estimated

groups for Balochistan, Sindh, and the area near the Afghan border.

Check 2. As an additional verification of our model, we can consider whether our

estimated group structure in Pakistan can predict the geographic structure of attacks

in a later period. BFRS and WITS data is not available for more recent years, so

we use data from the GTD for this analysis. We use data from the Nov. 2011 -

Dec. 2016 period, and run a clustering of this data into four groups.73 The resulting

72Neither the BFRS nor WITS record the group identity of the assailants in a systematic way.
73Another possibility would have been to examine data from a point earlier than our main pe-

riod. One of the data requirements for our method to be effective, however, is that there must be
simultaneous attacks in the districts that we wish to cluster. Although Pakistan has a long history
of terrorism, much of this violence is concentrated in major cities. For example, in 1995 the Global
Terrorism Database lists 666 attacks in Pakistan: of those, 614 of them occur in Karachi. The BFRS
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Appendix Table M.2: Estimation of Ĵ based on hierarchical splits

Pakistan (to Apr ’11)
Split at (1)? Randomly shuffled data (mean) 138.49

Std. dev. 7.82
Actual data 159.00
p-value 0.01

Split at (2)? Randomly shuffled data (mean) 45.82
Std. dev. 4.69
Actual data 58.00
p-value 0.01

Split at (3)? Randomly shuffled data (mean) 32.36
Std. dev. 4.09
Actual data 50.00
p-value 0.00

Split at (4)? Randomly shuffled data (mean) 11.00
Std. dev. 2.24
Actual data 13.00
p-value 0.24

Split at (5)? Randomly shuffled data (mean) 16.69
Std. dev. 2.76
Actual data 21.00
p-value 0.08

Split at (6)? Randomly shuffled data (mean) 13.12
Std. dev. 2.45
Actual data 15.00
p-value 0.27

Split at (7)? Randomly shuffled data (mean) 11.60
Std. dev. 2.42
Actual data 13.00
p-value 0.34

A test statistic Q is computed as described in Section 2.3, based on a within-month covariance matrix as described in Section 2.5. Figure

5 shows the order of the potential splits. Data used is the Pakistan BFRS dataset for May 2008 - April 2011. This is 6 months less data

than is used in Table 1, which uses data through to October 2011.
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group structure is shown in Figure N.10. There are obvious similarities here to the

clustering on the original data shown in Figure 7. To quantify these similarities,

we run regressions predicting the new group membership using the original group

membership: these are shown in Table N.9. In both figures, we see a group that

matches the Sindh ethnic homeland, another in Balochistan, and a third in the area

near the Afghan border. The GTD data includes fewer attacks than the BFRS data,

and has very few incidents in Punjab. We thus do not see any group corresponding to

the Punjabi ethnicity, which is main difference between Figures 7 and N.10. Overall,

however, the data shows a high degree of persistence in the structure of simultaneous

attacks, which suggests that the methods we describe can be used to predict patterns

of insurgent coordination in the future.

Check 3. In our estimation strategy, we calculate a covariance matrix based on

daily attack data. One might be concerned that in fact we are discarding useful in-

formation by considering only coordination within a single day. For example, perhaps

one of the ways an insurgency coordinates is to arrange sequential attacks over con-

secutive days. We can use the GTD to verify that this does not appear to be the

case.

The GTD allows for the component attacks of a multiple attack to occur on dif-

ferent days. 96% of all multiple attacks, however, take place only on one day. In

addition, most of the attacks that are spread across multiple days actually take place

on two consecutive days, and in some cases the notes for the attacks indicate that

the attack took place during a single night, with some components occurring before

midnight and others after midnight. We thus see that almost all multiple attacks are

indeed same-day simultaneous attacks, rather than spread out across time.74

Check 4. A concern is that the “groups” that result from our method do not

data similarly has 79% of all attacks occurring in Karachi. It is thus unsurprising that attempting to
cluster other districts does not yield meaningful results. For comparison, only 9% of attacks occur
in Karachi in 2009, and this is the most attacks in any district during that year. Because of this
feature of the earlier data, it is unfortunately not possible to track changes in the group structure in
Pakistan across time.

74One of the major advantages that counterinsurgency forces have is that they are generally more
numerous and better equipped than the insurgency that they are fighting. The insurgents, on the
other hand, have the advantage of surprise, in terms of both timing and location of attacks. If an
insurgent group were to advertise that they would attack a week later, the government would be able
to place their forces on high alert, change their deployment strategy, cancel leave, and so forth. The
insurgents thus face a higher cost in terms of casualties if they attack with advance warning. Horn
[2013] cites a Taliban commander describing how simultaneous attacks prevent a concentration of
security forces.
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match what a qualitative researcher would consider a group to be. For example,

they might be too narrow, classifying as different groups what are in reality simply

different branches of the same organization. Alternatively, the groups we estimate

might be too broad, lumping together different insurgent organizations that merely

cooperate occasionally on campaigns. As our definition of a group is based on same-

day simultaneous attacks, we can address this concern by examining how these attacks

are attributed to insurgent groups by qualitative analysts.

The GTD is again useful here, because it reports group identities where available.

Groups in the GTD are defined based on perpetrator information, where “the perpetra-

tor attributions recorded for each attack reflect what is reported in open-source media

accounts, which does not necessarily indicate a legal finding of culpability” and teams

of researchers at START (http://www.start.umd.edu/gtd/using-gtd/) are responsible

for the verification and consistency of the entries.

There are 6718 sets of multiple attacks in this database, with an average of 3.4

attacks in each set. Identities of the groups responsible are recorded for at least one

attack in 67% of these sets. Only 170 sets of attacks (2.5% of the total) have multiple

different groups recorded as being responsible for component attacks within the same

set of attacks. Of these, the majority are cases where it is unclear whether the attacks

were actually coordinated, and one of the groups is listed as unknown (the notes for

these attacks often report this uncertainty). There are only 50 cases (0.7% of the

total) where there are actually two distinct group names listed, and about half of

these are cases where an identified group is clearly responsible for one of the attacks,

but it is unclear whether it also committed the other one, and thus the second attack

is listed with a more general group description (e.g. Revolutionary United Front vs.

Rebels). There are only a few dozen cases where two different identified groups engage

in a simultaneous attack. This happens, for example, in Colombia (ELN and FARC)

and Chile (FPMR and MIR). It is thus true that sometimes multiple different groups

will engage in simultaneous attacks, but these incidents comprise only a fraction of a

percent of all simultaneous attacks.

We thus see that our simultaneous-attack based definition of a group is not too

wide compared to the definition used by qualitative sources, because the GTD shows

very little coordination of attacks between groups as they define them. A remaining

danger is that our definition is too narrow, in that different cells in a group that has a

cohesive objective may choose not to coordinate for some reason, and thus we detect
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too many groups using our method. However, we only detect one group in Afghanistan,

and 4 in Pakistan. In Pakistan, separatists in Sindh and Balochistan have their own

independent objectives, which are clearly not in alignment with Punjabi interests and

also differ from those of the Taliban. It thus seems unlikely that we have detected too

many groups in Pakistan, although there does not appear to be a more formal way of

testing this using the data sources that we currently have available.

Check 5. Our model suggests that part of the value of the simultaneous attack

relies on citizens knowing which group launched the attack, because the attack serves

as a signal of this groups strength. It is thus more important that a simultaneous

attack actually be attributed to a group, relative to a non-simultaneous attack. In

particular, we should expect that groups will claim credit for these attacks at rates

that are higher than for non-simultaneous attacks. Table N.5 shows that this appears

to indeed be the case, even after controlling for variables that describe the total size

and damage that the attacks cause.

Check 6. Another implication of our model is that types of attacks where de-

centralization is particularly important should be less likely to be simultaneous. For

example, consider the difference between bomb attacks against a railroad, versus the

assassination of senior government officials. The railroad is close to equally vulnerable

every day, although there may be slight variations in the effect of a bombing due to

differences in traffic. On the other hand, a given senior government official may be

vulnerable to assassination only on certain days, and the probability of an attempt

succeeding could vary greatly depending on when the attempt is made. Thus, there

would be substantial costs to attempting to coordinate two assassinations: even if the

coordinator had perfect information regarding when the targets were vulnerable, the

time selected for the attack would still be a compromise that would not have either

target at its most vulnerable. We should thus expect that assassinations are much

less likely to be part of a simultaneous attack than bombings. Table N.4 shows that

this appears to indeed be the case.

Check 7. Our theory of simultaneous attacks sketched in Appendix B is based on a

cost-benefit trade-off of launching a simultaneous attack. In the case where a terrorist

group is very weak and disorganized, it may be too difficult to attempt a simultaneous

attack. Is there evidence that weaker groups are less likely to launch simultaneous at-

tacks? The use of country-year data to answer this question is potentially problematic

but provides a valuable starting point.
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Appendix Figure N.7: Overdispersion and “Related” Attacks
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Table N.7 shows that a greater fraction of simultaneous attacks of interest is as-

sociated with a higher number of total attacks, even after controlling for country and

year fixed effects. However, there is an obvious confounding effect here, because a

group that is so weak that it can set off only a single bomb will not be able to launch

any simultaneous attacks. One way to attempt to deal with this is by using lagged

simultaneous attacks as an instrument for the fraction of simultaneous attacks this

year: Columns III and IV of Table N.7 show that results do not change when this

approach is used. So, at the very least, evidence from these conditional correlations

seems not to counter our intuition.

We further address this point by considering districts of Afghanistan. The ad-

vantage here is that even if there is only one attack in a district, it can still be a

simultaneous attack because it is coordinated with an attack in another district. Our

hypothesis is that districts where the Taliban are weak are districts where it would be

very costly for them to coordinate, and thus are districts where they will not engage

in simultaneous attacks. Figure N.8 and Table N.3 show that this indeed appears to

be the case.
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Appendix Figure N.8: Fraction of Taliban Multiple Attacks
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Appendix Figure N.9: Seasonality in Multiple Attacks in Afghanistan
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Appendix Table N.3: Fraction of Taliban Multiple Attacks

OLS OLS Logistic Logistic

I II III IV

(Intercept) 0.235 0.254 −1.253∗ −4.630∗∗∗

(0.169) (0.242) (0.756) (1.420)

log(Num Attacks) 0.037∗∗∗ 0.039∗∗∗ 0.308∗∗∗ 0.477∗∗∗

(0.009) (0.010) (0.051) (0.077)

log(Population) −0.022∗ −0.022 −0.247∗∗∗ −0.073
(0.013) (0.016) (0.060) (0.102)

log(Area) −0.002 −0.002 −0.088∗∗ −0.217∗∗∗

(0.008) (0.012) (0.037) (0.063)
Night Lights 92, 00, 12 Yes Yes
Province FE Yes Yes

Observations 341 341 341 341

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Observations are districts in Afghanistan. Dependent variable is the fraction of Tal-
iban attacks that are multiple attacks. Attacks by unidentified attackers and non-
Taliban attackers are omitted.
Data source: Global Terrorism Database, 1998-2016
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Appendix Table N.4: Is the attack part of multiple attacks?

OLS OLS Logit Logit

(1) (2) (3) (4)

Armed Assault 0.118∗∗∗ −0.016 −2.011∗∗∗ −3.514∗∗∗

(0.002) (0.010) (0.021) (0.120)

Assassination 0.032∗∗∗ −0.036∗∗∗ −3.397∗∗∗ −4.352∗∗∗

(0.005) (0.012) (0.077) (0.201)

Bombing/Explosion 0.172∗∗∗ 0.070∗∗∗ −1.568∗∗∗ −2.584∗∗∗

(0.002) (0.009) (0.012) (0.101)

Facility/Infrastructure 0.288∗∗∗ 0.042∗∗∗ −0.903∗∗∗ −2.904∗∗∗

(0.005) (0.015) (0.034) (0.145)

Hijacking 0.109∗∗∗ 0.027 −2.100∗∗∗ −3.035∗∗∗

(0.024) (0.039) (0.216) (0.418)

Hostage-Barricade 0.141∗∗∗ −0.043 −1.808∗∗∗ −3.609∗∗∗

(0.024) (0.034) (0.197) (0.372)

Hostage-Kidnapping 0.100∗∗∗ −0.048∗∗∗ −2.200∗∗∗ −3.692∗∗∗

(0.005) (0.015) (0.043) (0.171)

Unarmed Assault 0.173∗∗∗ 0.005 −1.562∗∗∗ −3.211∗∗∗

(0.016) (0.027) (0.121) (0.295)

Unknown 0.183∗∗∗ 0.032 −1.498∗∗∗ −2.995∗∗∗

(0.007) (0.022) (0.048) (0.212)

log(Num Perpetrators) 0.050∗∗∗ 0.435∗∗∗

(0.002) (0.023)

log(Num Killed + 1) −0.001 −0.006
(0.004) (0.041)

log(Num Wounded + 1) 0.015∗∗∗ 0.141∗∗∗

(0.003) (0.031)
Country FE Yes Yes

Observations 89,338 14,156 89,338 14,156

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Observations are individual terrorist attacks in all countries. Dependent variable is
binary: whether or the attack is part of a set of simultaneous (same day) attacks.
Attack types are an exhaustive set of dummy variables.
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Appendix Table N.5: Was the attack claimed by a terrorist group?

OLS OLS OLS Logit Logit Logit

I II III IV V VI

(Intercept) 0.131∗∗∗ 0.109∗∗∗ −1.892∗∗∗ −1.940∗∗∗

(0.001) (0.006) (0.011) (0.038)

Multiple Attack 0.105∗∗∗ 0.112∗∗∗ 0.068∗∗∗ 0.720∗∗∗ 0.555∗∗∗ 0.531∗∗∗

(0.003) (0.013) (0.012) (0.023) (0.076) (0.102)

log(Total Num Perpetrators) 0.004 −0.012∗∗∗ 0.020 −0.111∗∗∗

(0.003) (0.003) (0.017) (0.025)

log(Total Num Killed + 1) 0.054∗∗∗ 0.023∗∗∗ 0.298∗∗∗ 0.169∗∗∗

(0.005) (0.004) (0.029) (0.043)

log(Total Num Wounded + 1) 0.033∗∗∗ 0.022∗∗∗ 0.174∗∗∗ 0.184∗∗∗

(0.004) (0.003) (0.023) (0.032)

Country FE Yes
Terrorist Group FE Yes Yes
Observations 87,901 13,441 13,441 87,901 13,441 13,441

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Observations are individual terrorist attacks in all countries. Dependent variable is
binary: whether or not a terrorist group claimed responsibility for the attack. In the
case of multiple attacks, “Total Num” refers to the total number of perpetrators (etc.)
in all of the attacks combined.
Column VI omits country fixed effects due to convergence issues (very few terrorist
groups span multiple countries).
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Appendix Table N.6: Dependent variable is Herf. fragmentation of terrorist groups

I II III IV
(Intercept) 0.53∗ 0.06

(0.01) (0.08)
Overdispersion −0.28∗ −0.32∗ −0.28∗ −0.28∗

(0.04) (0.03) (0.03) (0.03)
Max Possible Overdispersion 0.50∗ 0.51∗ 0.45∗

(0.05) (0.06) (0.06)
FKMS Controls No Yes Yes Yes
Country FE No No Yes Yes
Year FE No No No Yes

N 1144 1143 1143 1143
R2 0.05 0.22 0.85 0.86

Robust standard errors in parentheses
∗ indicates significance at p < 0.05

Observations are an unbalanced panel in country and year. Dependent variable is
the Herfindahl fragmentation of terrorist attacks by terrorist group within a given
country-year. The range of the dependent variable depends on the number of ter-
rorist attacks that occurred: for example, with only one terrorist attack, the only
possible fragmentation is 0, while with two terrorist attacks the possible levels are 0
and 0.5. The control variable “Max Possible Overdispersion” is the maximum possi-
ble fragmentation given the number of attacks that occurred. A more sophisticated
adjustment appears not to exist: see Gotelli and Chao [2013] for discussion.
“FKMS Controls” are the covariates used in Table 1 of Freytag et al. [2011].75
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Appendix Table N.7: Relationship between number of attacks and overdispersion

OLS OLS IV IV

1 2 3 4

(Intercept) 1.517∗∗∗ 0.543∗

(0.041) (0.297)
Overdispersion 2.681∗∗∗ 1.567∗∗∗ 9.447∗∗∗ 10.719∗∗

(0.198) (0.115) (1.574) (4.413)
FKMS Controls No Yes No Yes
Country FE No Yes No Yes
Year FE No Yes No Yes

Observations 1,940 1,939 1,568 1,568

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Observations are an unbalanced panel in country and year. Dependent variable is the
log number of terrorist attacks in a given country-year. “Overdispersion” is G(x), as
defined in the text. “FKMS Controls” are the covariates used in Table 1 of Freytag et
al. [2011]. Columns 3 and 4 use the previous year’s overdispersion as an instrument
for current overdispersion.

Appendix Table N.8: “Related” attacks and overdispersion

I II III IV
(Intercept) 0.01 0.02

(0.00) (0.02)
Overdispersion 0.34∗ 0.34∗ 0.34∗ 0.35∗

(0.03) (0.03) (0.03) (0.03)
FKMS Controls No Yes Yes Yes
Country FE No No Yes Yes
Year FE No No No Yes
N 2006 2005 2005 2005

Robust standard errors in parentheses
∗ indicates significance at p < 0.05

Observations are an unbalanced panel in country and year. Dependent variable is
the fraction of terrorist attacks in a given country-year that had “related” attacks.
“Overdispersion” is G(x), as defined in the text. “FKMS Controls” are the covariates
used in Table 1 of Freytag et al. [2011].
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Appendix Table N.9: Pakistan Comparison using post- Nov 2011 GTDB data

Group 1 Group 2 Group 3 Group 4
Group 1 (mostly Baloch) 0.63 0.00 0.13 0.25

(0.13) (0.12) (0.13) (0.12)
Group 2 (mostly Sindhs) 0.07 0.80 0.07 0.07

(0.09) (0.08) (0.10) (0.09)
Group 3 (mostly Afghans) 0.08 0.08 0.77 0.08

(0.10) (0.09) (0.11) (0.09)
Group 4 (mostly Panjabis) 0.33 0.17 0.33 0.17

(0.15) (0.14) (0.15) (0.14)
N 42 42 42 42

Each column corresponds to a single regression without intercept.
The dependent variable is a dummy variable indicating whether a given district was
clustered into the specified group number in the clustering shown in Figure N.10.
The independent variables are a set of dummy variables, indicating whether a given
district was clustered into the specified group number in the clustering shown in Figure
7c. Districts shown as white (“no data”) in either Figure 7c or N.10 are dropped: the
remaining 42 districts are used in the regression.
Each row should sum to 1 because each coefficient in the table is a conditional mean
giving the fraction of districts of the specified ethnicity that were clustered into the
specified group, and the clustering in Figure N.10 assigns each district to one group.
Rows may not sum exactly to 1 because of rounding.
Standard errors in parentheses.
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Appendix Figure N.10: Pakistan Groups with post- Nov 2011 GTDB Data
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Appendix Figure N.11: Covariance Matrix for post- Nov 2011 GTDB Data

Cells of cross-district covariance matrix, coloured from low covariance (red) to high
covariance (white). Ordering of rows and columns is the default order for GIS maps
of Pakistan, which places districts in the same province together. Three groups are
clearly visible. The GTDB data contains very few attacks in Punjab: no group corre-
sponding to Punjab is visible. This data is clustered to produce Figure N.10.
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